精英家教網 > 初中數學 > 題目詳情

【題目】如圖A,B,D在同一條直線上,∠A=D=90°,AB=DE,BCE=BEC,

1)求證:ACB≌△DBE

2)求證:CBBE

【答案】1)見解析;(2)見解析.

【解析】

1)根據等角對等邊可得:BC=EB,再利用HL即可證出RtACBRtDBE;

2)由RtACBRtDBE,可得:∠ABC=DEB,再根據∠DEB+∠DBE=90°,從而得出:∠ABC+∠DBE=90°,即可得出∠CBE=90°,即CBBE.

證明:(1)∵∠BCE=BEC

BC=EB

RtACBRtDBE

RtACBRtDBE

2)∵RtACBRtDBE

∴∠ABC=DEB

∵∠D=90°

∴∠DEB+∠DBE=90°

∴∠ABC+∠DBE=90°

∴∠CBE=180°-(∠ABC+∠DBE=90°

CBBE

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在中,,垂足為點外角的平分線,,垂足為點,連接于點

求證:四邊形為矩形;

滿足什么條件時,四邊形是一個正方形?并給出證明.

的條件下,若,求正方形周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,邊長分別為的兩個正方形并排放在一起,連結并延長交于點,交于點,則

A. B. 2 C. 2 D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探究:如圖①,在四邊形中,,于點.若,求四邊形的面積.

應用:如圖②,在四邊形中,,,于點.若,,,則四邊形的面積為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線x軸交于點A,與直線交于點B

1)求點AB兩點的坐標;

2)直接寫出y1y2x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們將如圖所示的兩種排列形式的點的個數分別稱作三角形數(如1,3,6,10……) 和正方形數(如14,916……),在小于200的數中,設最大的三角形數t,最大的正方形數m,則t+m的值為( 。

A.33B.301C.386D.571

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形中,中點,過點的直線分別與交于點,,連接于點,連接.若,,則下列結論:

,

;

四邊形是菱形;

其中正確結論的個數是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知等邊三角形ABC邊長為a,等腰三角形BDC中,∠BDC120,∠MDN60,角的兩邊分別交AB,AC于點MN,連結MN.則AMN的周長為( )

A.aB.2aC.3aD.4a

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面的材料,回答問題:

愛動腦筋的小明發現二次三項式也可以配方,從而解決一些問題.

例如:x2﹣6x+10=(x2﹣6x+9)+1=(x﹣3)2+1≥0;因此x2﹣6x+10有最小值是1.

(1)嘗試:﹣3x2﹣6x+5=﹣3(x2+2x+1﹣1)+5=﹣3(x+1)2+8,因此﹣3x2﹣6x+5有最大值是   

(2)應用:有長為28米的籬笆,一面利用墻(墻的最大可用長度為16米),圍成一個長方形的花圃.能圍成面積最大的花圃嗎?如果能,請求出最大面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视