【題目】如圖,四邊形ABCD內接于⊙O.AC為直徑,AC、BD交于E,=
.
(1)求證:AD+CD=BD;
(2)過B作AD的平行線,交AC于F,求證:EA2+CF2=EF2;
(3)在(2)條件下過E,F分別作AB、BC的垂線垂足分別為G、H,連GH、BO交于M,若AG=3,S四邊形AGMO:S四邊形CHMO=8:9,求⊙O半徑.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)延長DA至W,使AW=CD,連接WB,證△BCD和△BAW全等,得到△WBD是等腰直角三角形,然后推出結論;
(2)過B作BE的垂線BN,使BN=BE,連接NC,分別證△AEB和△CNB全等,△BFE和△BFN全等,將EA,CF,EF三條線段轉化為直角三角形的三邊,即可推出結論;
(3)延長GE,HF交于K,通過大量的面積法的運用,將AE,CF,EF三條線段用含相同的字母表示出來,再根據第二問的結論求出相關字母的值,再求出AB的值,進一步求出⊙O半徑.
解:(1)延長DA至W,使AW=CD,連接WB,
∵=
,
∴∠ADB=∠CDB=45°,AB=BC,
∵四邊形ABCD內接于⊙O.
∴∠BAD+∠BCD=180°,
∵∠BAD+∠WAB=180°,
∴∠BCD=∠WAB,
在△BCD和△BAW中,
,
∴△BCD≌△BAW(SAS),
∴BW=BD,∠BWA=∠ADB=45°,
∴△WBD是等腰直角三角形,
∴AD+DC=DW=BD;
(2)如圖2,設∠ABE=α,∠CBF=β,則α+β=45°,
過B作BE的垂線BN,使BN=BE,連接NC,
在△AEB和△CNB中,
,
∴△AEB≌△CNB(SAS),
∴AE=CN,
∠BCN=∠BAE=45°,
∴∠FCN=90°,
∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,
∴△BFE≌△BFN,
∴EF=FN,
∵在Rt△NFC中,CF2+CN2=NF2,
∴EA2+CF2=EF2;
(3)如圖3,延長GE,HF交于K,
由(2)得EA2+CF2=EF2,
∴EA2+
CF2=
EF2,
∴S△AGE+S△CFH=S△EFK,
∴S△AGE+S△CFH+S五邊形BGEFH=S△EFK+S五邊形BGEFH,
即S△ABC=S矩形BGKH,
∴S△ABC=
S矩形BGKH,
∴S△GBH=S△ABO=S△CBO,
∴S△BGM=S四邊形COMH,S△BMH=S四邊形AGMO,
∵S四邊形AGMO:S四邊形COMH=8:9,
∴S△BMH:S△BGM=8:9,
∵BM平分∠GBH,
∴BG:BH=9:8,
設BG=9k,BH=8k,
∴CH=3+k,
∴AE=3,CF=
(k+3),EF=
(8k-3),
∴(3)2+[
(k+3)]2=[
(8k-3)]2,
整理,得7k2-6k-1=0,
解得:k1=-(舍去),k2=1,
∴AB=12,
∴AO=AB=6
,
∴⊙O半徑為6.
科目:初中數學 來源: 題型:
【題目】如圖,Rt⊿ABC中,∠C = 90,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=6,OC=,則直角邊BC的長為___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= .下列結論:
①△ADE∽△ACD; ②當BD=6時,△ABD與△DCE全等;
③△DCE為直角三角形時,BD為8; ④0<CE≤6.4.
其中正確的結論是____________.(把你認為正確結論的序號都填上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在小正方形的邊長均為1的方格紙中,有線段和線段
,點
均在小正方形的頂點上.
(1)在方格紙中畫出以為斜邊的直角三角形
,點E在小正方形的頂點上,且
的面積為5;
(2)在方格紙中畫出以為一邊的
,點
在小正方形的頂點上,
的面積為4,射線
與射線
交于點
,且
,連接
,請直接寫出線段
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,點A(﹣2,2)和點B(﹣3,﹣2)的位置如圖所示.
(1)作出線段AB關于y軸對稱的線段A′B′,并寫出點A、B的對稱點A′、B′的坐標;
(2)連接AA′和BB′,請在圖中畫一條線段,將圖中的四邊形AA′B′B分成兩個圖形,其中一個是軸對稱圖形,另一個是中心對稱圖形,并且線段的一個端點為四邊形的頂點,另一個端點在四邊形一邊的格點上.(每個小正方形的頂點均為格點).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球若干個(除顏色外其余都相同),其中紅球2個(分別標有1號、2號),藍球1個.若從中任意摸出一個球,它是藍球的概率為.
(1)求袋中黃球的個數;
(2)從袋中一次摸出兩個球,請用畫樹狀圖或列表格的方法列出所有等可能的結果,并求出摸到兩個不同顏色球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級學生共人,為了解這個年級學生的體能,從中抽取
名學生進行
分鐘的跳繩測試,結果統計的頻率分布如圖所示,其中從左至右前四個小長方形的高依次為
,如果跳繩次數不少于
次為優秀,根據這次抽查的結果,估計全年級達到跳繩優秀的人數為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發,沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為( 。
A. B. 2 C.
D. 2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com