【題目】如圖,兩棵樹的高度分別為AB=6 m,CD=8 m,兩樹的根部間的距離AC=4 m,小強沿著正對這兩棵樹的方向從左向右前進,如果小強的眼睛與地面的距離為1.6 m,當小強與樹AB的距離小于多少時,就不能看到樹CD的樹頂D?
科目:初中數學 來源: 題型:
【題目】如圖,已知A(﹣4,a),B(﹣1,2)是一次函數y1=kx+b與反比例函數y2=(m<0)圖象的兩個交點,AC⊥x軸于C.
(1)求出k,b及m的值.
(2)根據圖象直接回答:在第二象限內,當y1>y2時,x的取值范圍是 ________.
(3)若P是線段AB上的一點,連接PC,若△PCA的面積等于,求點P坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a、b、c為常數且a≠0)中的x與y的部分對應值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結論:
(1)二次函數y=ax2+bx+c有最小值,最小值為﹣3;
(2)當﹣<x<2時,y<0;
(3)a﹣b+c=0;
(4)二次函數y=ax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸兩側
則其中正確結論的個數是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一座跨河拱橋,橋拱是圓弧形,跨度AB為16米,拱高CD為4米.
(1)求橋拱的半徑R.
(2)若大雨過后,橋下水面上升到EF的位置,且EF的寬度為12米,求拱頂C到水面EF的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,排球運動員站在點O處練習發球,將球從O點正上方2m的A處發出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x-6)2+h.已知球網與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m。
(1)當h=2.6時,求y與x的關系式(不要求寫出自變量x的取值范圍)
(2)當h=2.6時,球能否越過球網?球會不會出界?請說明理由;
(3)若球一定能越過球網,又不出邊界,求h的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象開口向上,對稱軸為直線
,圖象經過
,下列結論:①
,②
,③
,④
,其中正確的是( )
A. ①②③④ B. ①③④ C. ①③ D. ①②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下框中是小明對一道題目的解答以及老師的批改.
題目:某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2∶1,在溫室內,沿前側內墻保留3 m的空地,其他三側內墻各保留1 m的通道,當溫室的長與寬各為多少時,矩形蔬菜種植區域的面積是288 m2?
解:設矩形蔬菜種植區域的寬為x_m,則長為2xm,
根據題意,得x·2x=288.
解這個方程,得x1=-12(不合題意,舍去),x2=12,
所以溫室的長為2×12+3+1=28(m),寬為12+1+1=14(m)
答:當溫室的長為28 m,寬為14 m時,矩形蔬菜種植區域的面積是288 m2.
我的結果也正確!
小明發現他解答的結果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個?.
結果為何正確呢?
(1)請指出小明解答中存在的問題,并補充缺少的過程:變化一下會怎樣?
(2)如圖,矩形A′B′C′D′在矩形ABCD的內部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,設AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應滿足什么條件?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線和x軸交于兩點A、B,和y軸交于點C,已知A、B兩點的橫坐標分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點的坐標為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com