精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知點E在直角ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相交于點D,AD平分∠BAC

(1)求證,BC是⊙O的切線.

(2)若BE=2,BD=4,求⊙O的半徑.

【答案】(1)證明見解析;(2)3

【解析】

(1)先連接OD,再由OD∥ACAC⊥BC可知OD⊥BC從而得證;
(2)利用切割線定理可先求出AB,進而求出圓的直徑,半徑則可求出.

(1)證明:連接OD

AD平分∠BAC

∴∠1=∠2

∵OA=OD

∴∠1=3

∴∠2=3;

ODAC

又∵ACBC,

ODBC

BC是⊙O的切線,

(2)解:∵BC與圓相切于點D

BD2=BEBA

BE=2,BD=4,

BA=8,

AE=ABBE=6,

∴⊙O的半徑為3.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知的半徑為,,的兩條弦,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,C=90°,AC=BC,AD平分BACBC于點D,DEAB于點E,若BDE的周長是6,則AB= ,AC=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀與計算:請閱讀以下材料,并完成相應的任務.

斐波那契(約11701250)是意大利數學家,他研究了一列數,這列數非常奇妙,被稱為斐波那契數列(按照一定順序排列著的一列數稱為數列).后來人們在研究它的過程中,發現了許多意想不到的結果,在實際生活中,很多花朵(如梅花、飛燕草、萬壽菊等)的瓣數恰是斐波那契數列中的數.斐波那契數列還有很多有趣的性質,在實際生活中也有廣泛的應用.斐波那契數列中的第n個數可以用表示(其中,n≥1).這是用無理數表示有理數的一個范例.

任務:請根據以上材料,通過計算求出斐波那契數列中的第1個數和第2個數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C,EO上的兩點,若AC平分∠EAB,CDAE于點D

(1)求證:DC是⊙O切線;

(2)若AO=6,DC=3,求DE的長;

(3)過點CCFABF,如圖2,若ADOA=1.5,AC=3,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為選拔一名選手參加美麗江門,我為僑鄉做代言主題演講比賽,經研究,按下圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統計圖不完整),下表是李明、張華在選拔賽中的得分情況:

服裝

普通話

主題

演講技巧

李明

85

70

80

85

張華

90

75

75

80

結合以上信息,回答下列問題:

1)求服裝項目在選手考評中的權數;

2)根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加美麗江門,我為僑鄉做代言主題演講比賽,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,E、F是對角線AC上兩點,連接BE、BFDE、DF,則添加下列條件①∠ABE=∠CBF;②AECF;③ABAF;④BEBF.可以判定四邊形BEDF是菱形的條件有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某藥廠銷售部門根據市場調研結果,對該廠生產的一種新型原料藥未來兩年的銷售進行預測,井建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),Pt之間存在如圖所示的函數關系,其圖象是函數P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Qt之間滿足如下關系:Q=

(1)當8<t≤24時,求P關于t的函數解析式;

(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)

①求w關于t的函數解析式;

②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續生產和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视