【題目】如圖,在平面直角坐標系xOy中,函數的圖象與直線
交于點
.
(1)求k、m的值;
(2)已知點,過點P作平行于x軸的直線,交直線
于點M,過點P作平行于y軸的直線,交函數
的圖象于點N.
①當時,判斷線段PM與PN的數量關系,并說明理由;
②用含n的式子表示PN,則________.
③若,結合函數的圖象,直接寫出n的取值范圍.
【答案】(1)m=1,k=3;(2)①,理由見解析,②
,③
或
.
【解析】
(1)將A點代入中即可求出m的值,然后將A的坐標代入反比例函數中即可求出k的值;
(2)①當時,分別求出M、N兩點的坐標即可求出PM與PN的關系;
②由PN∥y軸,可用含n的代數式表示出點N的坐標,然后利用兩點間的距離公式即可得出答案;
③由題意可求得點M的坐標,進而可得PM的長,由,再根據圖象即可求出n的范圍.
解:(1)將代入
,
,
,
將代入
,
;
(2)①當時,
,如圖,
令,代入
,得
,
,
,
,
令,代入
,
,
,
,
;
②∵,N(n,
),∴PN=
.
故答案為:;
③∵,∴點P在直線
上,
過點P作平行于x軸的直線,交直線于點M,則
,
,
,即
,
∴≥2,結合圖象可得:
或
.
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象過A(2,0),B(0,-1)和C(4,5)三點。
(1)求二次函數的解析式;
(2)設二次函數的圖象與軸的另一個交點為D,求點D的坐標;
(3)在同一坐標系中畫出直線,并寫出當
在什么范圍內時,一次函數的值大于二次函數的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程mx2﹣2x+2﹣m=0.
(1)證明:不論m為何值時,方程總有實數根;
(2)當m為何整數時,方程有兩個不相等的整數根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的兩邊落在坐標軸上,反比例函數y=的圖象在第一象限的分支過AB的中點D交OB于點E,連接EC,若△OEC的面積為12,則k=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的一元二次方程mx2+(2m+1)x+m=0有兩個實數根.
(1)求m的取值范圍
(2)是否存在實數m,使方程的兩實數根的倒數和為0?若存在,請求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O中,弦AB⊥AC,且AB=AC=6,點D在⊙O上,連接AD,BD,CD.
(1)如圖1,若AD經過圓心O,求BD,CD的長;
(2)如圖2,若∠BAD=2∠DAC,求BD,CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:角的內部一點到角兩邊的距離比為1:2,這個點與角的頂點所連線段稱為這個角的二分線.如圖1,點P為∠AOB內一點,PA⊥OA于點A,PB⊥OB于點B,且PB=2PA,則線段OP是∠AOB的二分線.
(1)圖1中,OP為∠AOB的二分線,PB=4,PA=2,且OA+OB=8,求OP的長;
(2)如圖2,正方形ABCD中,AB=2,點E是BC中點,證明:DE是∠ADC的二分線;
(3)如圖3,四邊形ABCD中,AB∥CD,∠ABC=90°,且∠CAB<∠CAD,∠BDC<∠BDA,若AC,BD分別是∠DAB,∠ADC的二分線,證明:四邊形ABCD是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD中,∠DAB=45°,AB是⊙O的直徑,點D在⊙O上,
(1)求證:CD是⊙O的切線;
(2)若AB=2,求圖中陰影部分的面積(結果保留π).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com