【題目】如圖,在菱形ABCD中,,點E在邊CD上,且
,
與
關于AE所在的直線成對稱圖形
以點A為中心,把
順時針旋轉
,得到
,連接GF,則線段GF的長為______.
【答案】
【解析】
連接BE,作BH⊥CD于H,先證△BAE≌△FAG,得到BE=GF,在Rt△BCH中,由∠C=60°得出CH=4,BH2=48,再在Rt△BEH中,利用勾股定理即可求出BE的長即可得解.
解:如圖,連接BE,作BH⊥CD于H,則∠BHC=90°,
由題意可知,菱形ABCD中,AB=BC=CD=AD=8,DE=6,∠C=∠DAB,
由旋轉知識可知,∠DAB=60°,AE=AG,∠DAE=∠BAG,
由對稱知識可知,AD=AF,∠DAE=∠FAE,
∴∠C=∠DAB=60°,EC=CD-DE=8-6=2,AB=AF,∠FAE=∠BAG,
∴∠FAE+∠BAF=∠BAG+∠BAF,即∠BAE=∠FAG,
∴△BAE≌△FAG,
∴BE=GF,
∵∠BHC=90°,∠C=60°,
∴CH=BC·cos60°=8×=4,
∴HE=CH-CE=4-2=2,BH2=BC2-CH2=82-42=48,
∴GF=BE==
=
.
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCO放在直角坐標系中,其中頂點B的坐標為(10, 8),E是BC邊上一點將△ABE沿AE折疊,點B剛好與OC邊上點D重合,過點E的反比例函數y=的圖象與邊AB交于點F, 則線段AF的長為( )
A. B. 2 C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的一點,F為AB邊上一點,連接CF,交BE于點D,且∠ACF=∠CBE,CG平分∠ACB交BD于點G,
(1)如圖1,求證:CF=BG;
(2)如圖2,延長CG交AB于H,連接AG,過點C作CP∥AG交BE的延長線于點P,
求證:PB=CP+CF;
(3)如圖3,在(2)間的條件下,當∠GAC=2∠FCH時,若S△AEG=3,BG=6,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班為滿足同學們課外活動的需求,要求購排球和足球若干個.已知足球的單價比排球的單價多元,用
元購得的排球數量與用
元購得的足球數量相等.
⑴排球和足球的單價各是多少元?
⑵若恰好用去元,有哪幾種購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點G,連接AG,那么∠AGD的底數是______度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為6的正方形ABCD內部有一點P,BP=4,∠PBC=60°,點Q為正方形邊上一動點,且△PBQ是等腰三角形,則符合條件的Q點有__________個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名同學在一次用頻率去估計概率的實驗中統計了某一結果出現的頻率,繪出的統計圖如圖所示,則符合這一結果的實驗可能是( )
A.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率
B.擲一枚正六面體的骰子,出現1點的概率
C.拋一枚硬幣,出現正面的概率
D.任意寫一個整數,它能被2整除的概率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1的正方形ABCD中,動點F,E分別以相同的速度從D,C兩點同時出發向C和B運動(任何一個點到達即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中,則下列結論:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為.其中正確的結論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC的三個頂點的坐標分別為A(-3,2)、B(0,4)、C(0,2).
⑴將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C.平移△ABC,若A對應點A2的坐標為(0,-4),畫出平移后對應的△A2B2C2;
⑵若將△A1B1C繞某一點旋轉得到△A2B2C2,請直接寫出旋轉中心的坐標為 .
⑶在x軸上找一點P,使得直線CP將△ABC的面積分為1:2,直接寫出P點的坐標為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com