【題目】一個六邊形的六個內角都是120°,連續四邊的長依次為2.31,2.32,2.33,2.31,則這個六邊形的周長為_____.
【答案】13.92
【解析】
凸六邊形ABCDEF,并不是一規則的六邊形,但六個角都是120°,所以通過適當的向外作延長線,可得到等邊三角形,進而求解.
解:如圖,AB=2.31,BC=2.32,CD=2.33,DE=2.31,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、P.
∵六邊形ABCDEF的六個角都是120°,
∴六邊形ABCDEF的每一個外角的度數都是60°.
∴△APF、△BGC、△DHE、△GHP都是等邊三角形.
∴GC=BC=2.32,DH=DE=2.31.
∴GH=2.32+2.33+2.31=6.96,FA=PA=PG﹣AB﹣BG=6.96﹣2.31﹣2.32=2.33,EF=PH﹣PF﹣EH=6.96﹣2.33﹣2.31=2.32.
∴六邊形的周長為2.31+2.32+2.33+2.31+2.32+2.33=13.92.
故答案為:13.92.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F,則DE的長是( )
A. B.
C. 1 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C,E為O上的兩點,若AC平分∠EAB,CD⊥AE于點D.
(1)求證:DC是⊙O切線;
(2)若AO=6,DC=3,求DE的長;
(3)過點C作CF⊥AB于F,如圖2,若AD﹣OA=1.5,AC=3,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于點E,∠ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經過點B,交BC于另一點F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小黃站在河岸上的點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船
的俯角是
,若小黃的眼睛與地面的距離
是
米,
米,
平行于
所在的直線,迎水坡
的坡度為
,坡長
米,則此時小船
到岸邊的距離
的長為( )米.(
,結果保留兩位有效數字)
A. 11 B. 8.5 C. 7.2 D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AE=AD,∠ABE=∠ACD,BE與CD相交于O.
(1)如圖1,求證:AB=AC;
(2)如圖2,連接BC、AO,請直接寫出圖2中所有的全等三角形(除△ABE≌△ACD外).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學興趣小組在“用面積驗證平方差公式”時,經歷了如下的探究過程;
(1)小明的想法是:將邊長為的正方形右下角剪掉一個邊長為
的正方形(如圖1),將剩下部分按照虛線分割成①和②兩部分,并用兩種方式表示這兩部分面積的和,請你按照小明的想法驗證平方差公式.
(2)小白的想法是:在邊長為的正方形內部任意位置剪掉一個邊長為
的正方形(如圖2),再將剩下部分進行適當分割,并將分割得到的幾部分面積和用兩種方式表示出來,請你按照小白的想法在圖中用虛線畫出分割線,并驗證平方差公式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,
(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.
(2)如圖3,將△A′BO繞點O逆時針旋轉交AB于點E′,交BC于點F,
①求證:BE′+BF=2,
②求出四邊形OE′BF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店準備購進甲、乙兩種商品.已知甲商品每件進價15元,售價20元;乙商品每件進價35元,售價45元.
(1)若該商店同時購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?
(2)若該商店準備用不超過3100元購進甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應該怎樣進貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進價)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com