【題目】如圖是某區1500名小學生和初中生的視力情況和他們每節課課間戶外活動平均時長的統計圖.
(1)根據圖1,計算該區1500名學生的近視率;
(2)根據圖2,從兩個不同的角度描述該區1500名學生各年級近視率的變化趨勢;
(3)根據圖1、圖2、圖3,描述該區1500名學生近視率和所在學段(小學、初中)、每節課課間戶外活動平均時長的關系.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣5ax+c與坐標軸分別交于點A,C,E三點,其中A(﹣3,0),C(0,4),點B在x軸上,AC=BC,過點B作BD⊥x軸交拋物線于點D,點M,N分別是線段CO,BC上的動點,且CM=BN,連接MN,AM,AN.
(1)求拋物線的解析式及點D的坐標;
(2)當△CMN是直角三角形時,求點M的坐標;
(3)試求出AM+AN的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,M為AD的中點,連接BM,交AC于E,在CB上取一點F,使得CF=AE,連接AF,交BM于G,連接CG.
(1)求∠BGF的度數;
(2)求的值;
(3)求證:BG⊥CG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學課上,老師提出如下問題:
已知:∠α,直線l和l上兩點A,B.
求作:Rt△ABC,使點C在直線l的上方,且∠ABC=90°,∠BAC=∠α.
小剛的做法如下:
①以∠α的頂點O為圓心,任意長為半徑作弧,交兩邊于M,N;以A為圓心,同樣長為半徑作弧,交直線l于點P;
②以P為圓心,MN的長為半徑作弧,兩弧交于點Q,作射線AQ;
③以B為圓心,任意長為半徑作弧,交直線l于E,F;
④分別以E,F為圓心,大于長為半徑作弧,兩弧在直線l上方交于點G,作射線BG;
⑤射線AQ與射線BG交于點C.Rt△ABC即為所求.
(1)使用直尺和圓規,補全圖形;(保留作圖痕跡)
(2)完成下面的證明:
連接PQ
在△OMN和△AQP中,
∵ON=AP,PQ=NM,OM=AQ
∴△OMN ≌△AQP(__________)(填寫推理依據)
∴∠PAQ=∠O=α
∵CE=CF,BE=BF
∴CB⊥EF(____________________________)(填寫推理依據)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=30°,AB=AC,將線段AC繞點A逆時針旋轉α°(0<α<180),得到線段AD,連接BD,交AC于點P.
(1)當α=90時,
①依題意補全圖形;
②求證:PD=2PB;
(2)寫出一個α的值,使得PD=PB成立,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當點H與點A重合時,EF=2.以上結論中,你認為正確的有( )個.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為
直徑,作
的內接正六邊形,甲、乙兩人的作法分別如下:
甲:1.作的中垂線,交圓
于
兩點;2.作
的中垂線,交圓
于
兩點;3.順次連接
六個點,六邊形即為所求;
乙:1.以為圓心,
長為半徑作弧,交圓
于
兩點;2.以
為圓心,
長為半徑作弧,交圓
于
兩點;3.順次連接
六個點,六邊形即為所求;
對于甲、乙兩人的作法,可判斷( )
A.甲對,乙不對B.甲不對,乙對
C.兩人都不對D.兩人都對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖放置的兩個正方形,大正方形邊長為
,小正方形
邊長為
(
),
在
邊上,且
,連接
,
,
交
于點
,將
繞點
旋轉至
,將
繞點
旋轉至
,給出以下五個結論:①
;②
;③
;④
;⑤
四點共圓,其中正確的序號為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數量關系.
【發現證明】小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發現EF=BE+FD,請你利用圖(1)證明上述結論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD;請證明你的結論.
【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現要在E、F之間修一條筆直道路,求這條道路EF的長.(結果取整數,參考數據:
=1.41,
=1.73)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com