【題目】列方程解應用題。
端午節期間,某食堂根據職工食用習慣,用700元購進甲、乙兩種粽子260個,其中甲種粽子比乙種粽子少用100元,已知甲種粽子單價比乙種粽子單價高20%,乙種粽子的單價是多少元?甲、乙兩種粽子各購買了多少個?
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.
(1)判斷直線l與⊙O的位置關系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了抓住梵凈山文化藝術節的商機,某商店決定購進A、B兩種藝術節紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市規定了每月用水18立方米以內(含18立方米)和用水18立方米以上兩種不同的收費標準,該市的用戶每月應交水費y(元)是用水量x(立方米)的函數,其圖象如圖所示.
(1)若某月用水量為18立方米,則應交水費多少元?
(2)求當x>18時,y關于x的函數表達式,若小敏家某月交水費81元,則這個月用水量為多少立方米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】|a|+|b|=|a+b|,則a,b關系是( 。
A. a,b的絕對值相等
B. a,b異號
C. a+b的和是非負數
D. a、b同號或a、b其中一個為0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有理數a,b,c在數軸上的位置如圖所示,且表示數a的點、數b的點到原點的距離相等.
(1)用“>”“=”“<”填空:b 0,a+b 0,a﹣c 0,b﹣c 0,a+c 0;
(2)化簡|a+b|+|a﹣c|﹣|b|+|a|+|c|+|a+c|.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了拉動內需,全國各地汽車購置稅補貼活動在2009年正式開始,某經銷商在政策出臺前一個月共售出某品牌汽車的手動型和自動型共960臺,政策出臺后的第一個月售出這兩種型號的汽車共1228臺,其中手動型和自動型汽車的銷售量分別比政策出臺前一個月增長30%和25%.
(1)在政策出臺前一個月,銷售的手動型和自動型汽車分別為多少臺?
(2)若手動型汽車每臺價格為8萬元,自動型汽車每臺價格為9萬元.根據汽車補貼政策,政府按每臺汽車價格的5%給購買汽車的用戶補貼,問政策出臺后的第一個月,政府對這1228臺汽車用戶共補貼了多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某藥物研究單位試制成功一種新藥,經測試,如果患者按規定劑量服用,那么服藥后每毫升血液中含藥量y(微克)隨時間x(小時)之間的關系如圖所示,如果每毫升血液中的含藥量不小于20微克,那么這種藥物才能發揮作用,請根據題意回答下列問題:
(1)服藥后,大約 分鐘后,藥物發揮作用.
(2)服藥后,大約 小時,每毫升血液中含藥量最大,最大值是 微克;
(3)服藥后,藥物發揮作用的時間大約有 小時.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com