分析 (1)由平行四邊形的性質得出AD∥BC,AD=BC,得出∠EAM=∠FCN,AE=CF,由AAS證明△AEM≌△CFN,得出對應邊相等即可;
(2)連接EN、FM,求出EM=FN,EM∥FN,得出平行四邊形EMFN,根據平行四邊形的性質得出即可.
解答 證明:(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,
∴∠EAM=∠FCN,
∵DE=BF,
∴AE=CF,∵EM⊥AC于M,FN⊥AC于N,∴∠AME=∠CNF=90°,
在△AEM和△CFN中,$\left\{\begin{array}{l}{∠EAM=∠∠FCN}&{\;}\\{∠AME=∠CNF}&{\;}\\{AE=CF}&{\;}\end{array}\right.$,
∴△AEM≌△CFN(AAS),
∴EM=FN;
(2)連接EN、FM,如圖所示:
∵EM⊥AC,FN⊥AC,
∴∠AME=∠EMN=∠FNC=∠FNM=90°,
∴EM∥FN,
又∵由(1)得EM=FN,
∴四邊形EMFN是平行四邊形,
∴EF與MN互相平分.
點評 本題考查了平行四邊形的性質和判定,全等三角形的性質和判定的應用;熟練掌握平行四邊形的性質,證明三角形全等是解決問題的關鍵解.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | (31,50) | B. | (32,47) | C. | (33,46) | D. | (34,42) |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com