精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在等邊三角形網格中建立平面斜坐標系,對于其中的格點”(落在網格線交點處的點),過點分別做, 軸的平行線,找到平行線與另一坐標軸的交點的坐標和坐標,記這個有序數對為它的坐標,如,,規定當點在軸上時,坐標為0,如;當點在軸上時,坐標為0.

1)原點的坐標為 ,格點的坐標為 .

2)在圖中畫出點的位置;

3)直線上的格點的坐標滿足的條件是 (其中為整數).

【答案】1,;(2)見解析;(3

【解析】

1)根據平面直角坐標系中點的坐標的確定方法確定即可;

2)根據平面直角坐標系中點的坐標的確定方法確定即可;

3)觀察直線AD上的點的縱,橫坐標即可得出結論.

1

2)點,的位置如圖1所示

3)如圖所示,A(2,4),E(3,3),D(4,2),

可以看出,直線AD上的點的橫坐標與縱坐標之和為6.

故點M(m,n)的坐標滿足的條件是(其中為整數)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,A、B是反比例函數y=上兩點,ACy軸于C,BDx軸于D,AC=BD=OC,S四邊形ABDC=14,則k= .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數y= (x>0)的圖象經過點C,交AB于點D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)連接OC,若BD=BC,求OC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數是(  )

A. 25° B. 30° C. 35° D. 40°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】張老師從咸寧出發到外地參加教育信息化應用技術提高培訓,他可以乘坐普通列車,也可以乘坐高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵行駛路程的1.3倍.若高鐵的平均速度(千米/小時)是普通列車平均速度的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間少3小時,求高鐵的平均速度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E、FAC上,且AFCE,點G、H分別在AB、CD上,且AGCHACGH相交于點O.

1)求證:EG//FH;

2GH、EF互相平分.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探究題

已知:如圖1,,.求證:

老師要求學生在完成這道教材上的題目證明后,嘗試對圖形進行變式,繼續做拓展探究,看看有什么新發現?

1)小穎首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質,小穎用到的平行線性質可能是 .

2)接下來,小穎用《幾何畫板》對圖形進行了變式,她先畫了兩條平行線,然后在平行線間畫了一點,連接后,用鼠標拖動點,分別得到了圖2,3,4,小穎發現圖3正是上面題目的原型,于是她由上題的結論猜想到圖24中的之間也可能存在著某種數量關系.于是她利用《幾何畫板》的度量與計算功能,找到了這三個角之間的數量關系.

請你在小穎操作探究的基礎上,繼續完成下面的問題:

①猜想圖2、之間的數量關系并加以證明;

②補全圖4,直接寫出、之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EFBC于點D,AB于點E,CF=AE

(1)試探究,四邊形BECF是什么特殊的四邊形;

(2)的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結論.

(特別提醒:表示角最好用數字)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了提高綠化品位,美化環境,準備將一塊周長為114 m的長方形草地,設計成長和寬分別相等的9塊長方形(如圖所示),種上各種花卉,經市場預測,每平方米綠化費為100元.

(1)求出每個小長方形的長和寬;

(2)請計算出完成這塊草地的綠化工程預計投入資金多少元.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视