【題目】綜合題化簡及計算
(1)化簡: ﹣
(2)關于x的一元二次方程kx2﹣2x+3=0有兩個不相等的實數根.求:k的取值范圍.
【答案】
(1)解:原式= +
=
=
(2)解:根據題意得k≠0且△=(﹣2)2﹣4k3>0,
解得k< 且k≠0
【解析】(1)分式化簡的基本方法有通分、約分,分子分母出現多項式時看能否分解因式,便于約分;(2)一元二次方程有兩個不相等實數根的條件包括k0,
>0.
【考點精析】根據題目的已知條件,利用分式的加減法和求根公式的相關知識可以得到問題的答案,需要掌握分式的加減法分為同分母的加減法和異分母的加減法.而異分母的加減法是通過"通分"轉化為同分母的加減法進行運算的;根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數根2、當△=0時,一元二次方程有2個相同的實數根3、當△<0時,一元二次方程沒有實數根.
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,完成相應任務:
折紙三等分角 |
學習任務:
(1)將剩余部分的證明過程補充完整;
(2)若將圖1中的點S與點D重合,重復材料中的操作過程得到圖4,請利用圖4,直接寫出tan15°=(不必化簡)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點,
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環境,某化工廠一期工程完成后購買了臺甲型和
臺乙型污水處理設備,共花費資金
萬元,且每臺乙型設備的價格是每臺甲型設備價格的
,實際運行中發現,每臺甲型設備每月能處理污水
噸,每臺乙型設備每月能處理污水
噸.今年該廠二期工程即將完成產生的污水將大大增加,于是該廠決定再購買甲、乙兩種型號設備共
臺用于二期工程的污水處理,預算本次購買資金不超過
萬元,預計二期工程完成后每月將產生不少于
噸污水.
(1)請你計算每臺甲型設備和每臺乙型設備的價格各是多少元;
(2)請你求出用于二期工程的污水處理設備的所有購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.
(1)已知點M,N是線段AB的勾股分割點,若AM=2,MN=3,則BN=;
(2)如圖2,在△ABC中,FG是中位線,點D,E是線段BC的勾股分割點,且EC>DE≥BD,連接AD,AE分別交FG于點M,N,求證:點M,N是線段FG的勾股分割點;
(3)如圖3,已知點M,N是線段AB的勾股分割點,MN>AM≥BN,四邊形AMDC,四邊形MNFE和四邊形NBHG均是正方形,點P在邊EF上,試探究S△ACN , S△APB , S△MBH的數量關系.
S△ACN=;S△MBH=;S△APB=;
S△ACN , S△APB , S△MBH的數量關系是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在創建文明城區的活動中,有兩端長度相等的彩色道磚鋪設任務,分別交給甲、乙兩個施工隊同時進行施工.如圖是反映所鋪設彩色道磚的長度(米)與施工時間
(時)之間的關系的部分圖像.請解答下列問題.
(1)甲隊在的時段內的速度是 米/時.乙隊在
的時段內的速度是 米/時. 6小時甲隊鋪設彩色道磚的長度是 米,乙隊鋪設彩色道磚的長度是 米.
(2)如果鋪設的彩色道磚的總長度為150米,開挖6小時后,甲隊、乙隊均增加人手,提高了工作效率,此后乙隊平均每小時比甲隊多鋪5米,結果乙反而比甲隊提前1小時完成總鋪設任務.求提高工作效率后甲隊、乙隊每小時鋪設的長度分別為多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數 y1=k1x與的圖象都經過點(2,2).
(1)填空:k1= ,k2= ;
(2)在同一坐標系中作出這兩個函數的圖象;
(3)直接寫出當y1>y2時,自變量x的取值范圍: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com