精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在邊長為2的菱形ABCD中,∠A60°,MAD邊的中點,NAB邊上的一動點,將△AMN沿MN所在直線翻折得到△AMN,連接AC,則AC長度的最小值是_____

【答案】1

【解析】

根據題意,在N的運動過程中A′在以M為圓心、AD為直徑的圓上的弧AD上運動,當AC取最小值時,由兩點之間線段最短知此時M、A′、C三點共線,得出A′的位置,進而利用銳角三角函數關系求出AC的長即可.

解:如圖所示:

MA′是定值,AC長度取最小值時,即A′在MC上時,

過點MMFDC于點F,

∵在邊長為2的菱形ABCD中,∠A60°,MAD中點,

2MDADCD2,∠FDM60°,

∴∠FMD30°,

FDMD

FMDM×cos30°=

MC,

ACMCMA′=1

故答案為:1

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,將△ABC沿射線BC方向平移3cm得到△DEF.若△ABC的周長為14cm,則四邊形ABFD的周長為(  )

A. 14cm B. 17cm C. 20cm D. 23cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地為提倡節約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地決策,自來水公司隨機抽取部分用戶的用適量數據,并繪制了如下不完整統計圖(每組數據包括右端點但不包括左端點),請你根據統計圖解決下列問題:

(1)此次調查抽取了多少用戶的用水量數據?

(2)補全頻數分直方圖,求扇形統計圖中“25噸~30噸”部分的圓心角度數;

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca0)的對稱軸為x=1,交x軸的一個交點為(x1,0),且﹣1x10,有下列5個結論:①abc0;9a﹣3b+c0;2c3b;a+c2b2;a+bmam+b)(m≠1的實數)其中正確的結論有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小聰和小明沿同一條路同時從學校出發到圖書館查閱資料,學校與圖書館的路程是4千米,小聰騎自行車,小明步行,當小聰從原路回到學校時,小明剛好到達圖書館,圖中折線OABC和線段OD分別表示兩人離學校的路程(千米)與所經過的時間(分鐘)之間的函數關系,請根據圖象回答下列問題:

1)小聰在圖書館查閱資料的時間為 分鐘,小聰返回學校的速度為 千米/分鐘.

2)請你求出小明離開學校的路程(千米)與所經過的時間(分鐘)之間的函數關系;

3)當小聰與小明迎面相遇時,他們離學校的路程是多少千米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸相交于兩點A1,0),B3,0),與y軸相交于點C0,3).

1)求拋物線的函數關系式.

2)將y=ax2+bx+c化成y=ax﹣m2+k的形式(請直接寫出答案).

3)若點D3.5m)是拋物線y=ax2+bx+c上的一點,請求出m的值,并求出此時ABD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】本題滿分8如圖,在ABC中,AB=AC,DACABC的一個外角

實踐與操作:

根據要求尺規作圖,并在圖中標明相應字母保留作圖痕跡,不寫作法

1DAC的平分線AM;

2作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AECF

猜想并證明:

判斷四邊形AECF的形狀并加以證明

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,∠E∠F90°,∠B∠C,AEAF.有以下結論:①EMFN;②CDDN③∠FAN∠EAM;④△ACN≌△ABM.其中正確的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某次大型活動,組委會啟用無人機航拍活動過程,在操控無人機時應根據現場狀況調節高度,已知無人機在上升和下降過程中速度相同,設無人機的飛行高度h(米)與操控無人機的時間t(分鐘)之間的關系如圖中的實線所示,根據圖象回答下列問題:

1)圖中的自變量是______,因變量是______

2)無人機在75米高的上空停留的時間是______分鐘;

3)在上升或下降過程中,無人機的速度______為米/分;

4)圖中a表示的數是______;b表示的數是______;

5)圖中點A表示______

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视