精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點D,則圖中陰影部分的面積是(
A.
B.
C.
D.

【答案】A
【解析】解:如圖連接OD、CD. ∵AC是直徑,
∴∠ADC=90°,
∵∠A=30°,
∴∠ACD=90°﹣∠A=60°,
∵OC=OD,
∴△OCD是等邊三角形,
∵BC是切線.
∴∠ACB=90°,∵BC=2 ,
∴AB=4 ,AC=6,
∴S=SABC﹣SACD﹣(S扇形OCD﹣SOCD
= ×6×2 ×3×3 ﹣( ×32
= π.
故選A.

【考點精析】根據題目的已知條件,利用含30度角的直角三角形和扇形面積計算公式的相關知識可以得到問題的答案,需要掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】據報道,深圳今年4 月2 日至4 月8 日每天的最高氣溫變化如圖所示.則關于這七天的最高氣溫的數據,下列判斷中錯誤的是(
A.平均數是26
B.眾數是26
C.中位數是27
D.方差是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學在一次愛心捐款活動中,全體同學積極踴躍捐款.現抽查了九年級(1)班全班同學捐款情況,并繪制出如下的統計表和統計圖:

求:(1)m=__________,n=__________;

(2)求學生捐款數目的眾數、中位數和平均數;

(3)若該校有學生2500人,估計該校學生共捐款多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:二次函數y=2x2+4x+m﹣1,與x軸的公共點為A,B.
(1)如果A與B重合,求m的值;
(2)橫、縱坐標都是整數的點叫做整點; ①當m=1時,求線段AB上整點的個數;
②若設拋物線在點A,B之間的部分與線段AB所圍成的區域內(包括邊界)整點的個數為n,當1<n<8時,結合函數的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】旅游公司在景區內配置了50輛觀光車供游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金x(元)是5的倍數.發現每天的營運規律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.
(1)優惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)
(2)當每輛車的日租金為多少元時,每天的凈收入最多?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某自動化車間計劃生產480個零件,當生產任務完成一半時,停止生產進行自動化程序軟件升級,用時20分鐘,恢復生產后工作效率比原來提高了,結果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產多少個零件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠設門市部專賣某產品,該產品每件成本40元,從開業一段時間的每天銷售統計中,隨機抽取一部分情況如下表所示:

每件銷售價(元)

50

60

70

75

80

85

每天售出件數

300

240

180

150

120

90

假設當天定的售價是不變的,且每天銷售情況均服從這種規律.
(1)觀察這些統計數據,找出每天售出件數y與每件售價x(元)之間的函數關系,并寫出該函數關系式.
(2)門市部原設有兩名營業員,但當銷售量較大時,在每天售出量超過168件時,則必須增派一名營業員才能保證營業有序進行,設營業員每人每天工資為40元.求每件產品應定價多少元,才能使每天門市部純利潤最大(純利潤指的是收入總價款扣除成本及營業員工資后的余額,其它開支不計)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點DAB的中點,點EAB邊上一點.

(1)直線BF垂直直線CE于點F,交CD于點G(如圖①),求證:AE=CG;

(2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖②),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视