【題目】如圖1,在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.M在AB上,且∠APM=∠APD,過點B作BN∥MP交DC于點N.
(1)求證:四邊形PMBN是菱形;
(2)求證:ADBC=DPPC;
(3)如圖2,連接AC,分別交PM,PB于點E,F,若DP=1,AD=2,求的值.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】
(1)DP∥AB,所以∠DPA=∠PAM,由題意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,從而可知PM=MB=AM,又易證四邊形PMBN是平行四邊形,所以四邊形PMBN是菱形;
(2)根據余角的性質得到∠DAP=∠BPC,根據相似三角形的性質即可得到結論;
(3)根據矩形的性質得到BC=AD=2,求得AB=CD=5,根據平行線的性質得到∠APD=∠PAM,推出AM=MP,得到AM=MB=,根據相似三角形的性質得到
,求得
,根據相似三角形的性質得到
,得到
,于是得到結論.
(1)證明:在矩形ABCD中,DC∥AB,
∵BN∥MP,
∴四邊形PMBN是平行四邊形,
∵∠APB=90°,
∴∠APM+∠BPM=90°,
∠APD+∠BPC=90°,
∵∠APM=∠APD,
∴∠BPM=∠BPC,
∵DC∥AB,
∴∠BPC=∠PBM,
∵∠BPM=∠PBM
∴MP=MB,
∴平行四邊形PMBN是菱形;
(2)證明:在矩形ABCD中,∠D=∠C=90°,
∴∠APD+∠DAP=90°,
∵∠APD+∠BPC=90°,
∴∠DAP=∠BPC,
∴△ADP∽△PCB,
∴,
∴ADBC=DPPC;
(3)解:∵四邊形ABCD是矩形,
∴BC=AD=2,
由(2)得ADBC=DPPC
∴PC=4,
∴AB=CD=5,
在矩形ABCD中,DC∥AB,
∴∠APD=∠PAM,
∵∠APM=∠APD,
∴∠PAM=∠APM,
∴AM=MP,
由(1)得MP=MB,
∴AM=MB=,
∵DC∥AB,
∴∠PCA=∠CAB,
∵∠PFC=∠BFA,
∴△PCF∽△BAF,
∴,
∴,
同理可得△PCE∽△MAE,
∴,
∴,
∴EF=AC﹣CF﹣AE=AC,
∴.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD,將邊CD繞點C順時針旋轉60°,得到線段CE,連接DE,AE,BD交于點F.
(1)求∠AFB的度數;
(2)求證:BF=EF;
(3)連接CF,直接用等式表示線段AB,CF,EF的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,P是CB邊上一動點,連接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,設PC的長度為xcm,BQ的長度為ycm.
小青同學根據學習函數的經驗對函數y隨自變量x的變化而變化的規律進行了探究.
下面是小青同學的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y的幾組對應值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(說明:補全表格時,相關數據保留一位小數)
m的值約為多少cm;
(2)在平面直角坐標系中,描出以補全后的表格中各組數值所對應的點(x,y),畫出該函數的圖象;
(3)結合畫出的函數圖象,解決問題:
①當y>2時,寫出對應的x的取值范圍;
②若點P不與B,C兩點重合,是否存在點P,使得BQ=BP?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在測量“河流寬度”的綜合與實踐活動中,小李同學設計的方案及測量數據如下:在河對岸邊選定一個目標點A,在近岸取點B,C,D (點B,C,D在同一條直線上),AB⊥BD,∠ACB=45°,CD=20米,且.若測得∠ADB=25°,請你幫助小李求河的寬度AB.(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,結果精確到0.1米).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發現,該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+80.設這種產品每天的銷售利潤為w元.
(1)求w與x之間的函數關系式.
(2)該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com