【題目】對于二次函數和一次函數
,我們把
稱為這兩個函數的“再生二次函數”,其中t是不為零的實數,其圖象記作拋物線E.現有點A(1,0)和拋物線E上的點B(2,n),請完成下列任務:
(嘗試)
(1)當t=2時,拋物線的頂點坐標為 .
(2)判斷點A是否在拋物線E上;
(3)求n的值.
(發現)通過(2)和(3)的演算可知,對于t取任何不為零的實數,拋物線E總過定點,定點的坐標 .
(應用)二次函數是二次函數
和一次函數
的一個“再生二次函數”嗎?如果是,求出t的值;如果不是,說明理由.
【答案】嘗試:(1)(,-
).(2)點A(1,0)在拋物線l上.(3)n=-1.
發現:(1,0)、(2,-1).
應用:不是,理由見解析
【解析】
嘗試:(1)將t的值代入“再生二次函數”中,通過配方可得到頂點的坐標;
(2)將點A的坐標代入拋物線E上直接進行驗證即可;
(3)已知點B在拋物線E上,將該點坐標代入拋物線E的解析式中直接求解,即可得到n的值.
發現:將拋物線l展開,然后將含t值的式子整合到一起,令該式子為0(此時無論t取何值都不會對函數值產生影響),即可求出這個定點的坐標.
應用:將發現中得到的兩個定點坐標代入二次函數中進行驗證即可.
解:嘗試:
(1)∵將t=2代入拋物線l中,得:=2x27x+5=2(x
)2
,
∴此時拋物線的頂點坐標為:(,-
).
(2)∵將x=1代入y=2x27x+5,得 y=0,
∴點A(1,0)在拋物線l上.
(3)將x=2代入拋物線 y=2x27x+5的解析式中,得:
n=-1.
發現:
∵將拋物線E的解析式展開,得:
=t(x1)(x-3)(x-1)+t(x-1)= t(x1)(x-2)(x-1)
∴拋物線l必過定點(1,0)、(2,-1).
應用:將x=1代入,y=0,即點A在拋物線上.
將x=2代入,計算得:y=6≠-1,
即可得拋物線不經過點B,
二次函數不是二次函數
和一次函數y=x+1的一個“再生二次函數”.
科目:初中數學 來源: 題型:
【題目】某廠準備生產甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區,已知2件甲種商品與3件乙種商品的銷售額相同,3件甲種商品比2件乙種商品的銷售額多1500元.
(1)甲種商品與乙種商品的銷售單價各多少元?
(2)若甲、乙兩種商品的銷售總額不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一跨河橋,橋拱是圓弧形,跨度(AB)為16米,拱高(CD)為4米,求:
(1)橋拱半徑.
(2)若大雨過后,橋下河面寬度(EF)為12米,求水面漲高了多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOB=90°,∠OAB=30°,反比例函數的圖象過點
,反比例函數
的圖象過點A
(1)求和
的值.
(2)過點B作BC∥x軸,與雙曲線交于點C,求△OAC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象過點
和點
,對稱軸為直線
.
求該二次函數的關系式和頂點坐標;
結合圖象,解答下列問題:
①當時,求函數
的取值范圍.
②當時,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線和直線l:y=kx+b,點A(-3,-3),B(1,-1)均在直線l上.
(1)若拋物線C與直線l有交點,求a的取值范圍;
(2)當a=-1,二次函數的自變量x滿足m≤x≤m+2時,函數y的最大值為-4,求m的值;
(3)若拋物線C與線段AB有兩個不同的交點,請直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結論:①b2﹣4ac>0; ②abc>0; ③8a+c<0; ④9a+3b+c>0.其中,正確結論的個數( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】求解體驗:
(1)已知拋物線 y=﹣x2+bx﹣3 經過點(﹣1,0),則 b= ,頂點坐標為 ,該拋物線關于點(0,1)成中心對稱的拋物線表達式是 .
抽象感悟:
我們定義:對于拋物線 y=ax2+bx+c(a≠0),以 y 軸上的點 M(0,m)為中心,作該拋物線關于點 M 對稱的 拋物線 y′,則我們又稱拋物線 y′為拋物線 y 的“衍生拋物線”,點 M 為“衍生中心”.
(2)已知拋物線 y=﹣x2﹣2x+5 關于點(0,m)的衍生拋物線為 y′,若這兩條拋物線有交點,求 m 的取值范 圍.
問題解決:
(3)已知拋物線 y=ax2+2ax﹣b(a≠0)
①若拋物線 y 的衍生拋物線為 y′=bx2﹣2bx+a2(b≠0),兩拋物線有兩個交點,且恰好是它們的頂點,求 a、b 的值及衍生中心的坐標;
②若拋物線 y 關于點(0,k+12)的衍生拋物線為 y1,其頂點為 A1;關于點(0,k+22)的衍生拋物線為 y2,其頂點為 A2;…;關于點(0,k+n2)的衍生拋物線為 yn,其頂點為 An…(n 為正整數).求 An An+1 的長(用含 n 的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設a、b是任意兩個實數,用max{a,b}表示a、b兩數中較大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,參照上面的材料,解答下列問題:
(1)max{5,2}= ,max{0,3}= ;
(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范圍;
(3)求函數與y=﹣x+2的圖象的交點坐標,函數
的圖象如圖所示,請你在圖中作出函數y=﹣x+2的圖象,并根據圖象直接寫出max{﹣x+2,
}的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com