【題目】如圖,已知鈍角△ABC
(1)過點A作BC邊的垂線,交CB的延長線于點D;(尺規作圖,保留作圖痕跡,不要求寫作法)
(2)在(1)的條件下,若∠ABC=122°,BC=5,AD=4,求CD的長.(結果保留到0.1,參考數據:sin32°=0.53,cos32°=0.85,tan32°=0.62.)
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以頂點A為圓心,AD長為半徑,在AB邊上截取AE=AD,用尺規作圖法作出∠BAD的角平分線AG,若AD=5,DE=6,則AG的長是_________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某校組織“學經典,用經典”知識競賽,每班參加比賽的學生人數相同,成績分為四個等級,其中相應等級的得分依次記為
分,
分,
分,
分,學校將某年級的一班和二班的成績整理并繪制成如下的統計圖:
請你根據以上提供的信息解答下列問題:
(1)此次競賽中二班成績“級”的人數為 ;
(2)請你將下表補充完整:
平均數(分) | 中位數(分) | 眾數(分) | |
一班 | |||
二班 |
(3)請你對這次兩班成績統計數據的結果進行分析(寫出一條結論即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學活動小組為了解全縣九年級學生在抗新冠病毒疫情期間平均每天居家鍛煉時間,向全縣部分學生進行了抽樣調查,并將收集到的數據整理成如圖的統計圖(部分數據未標出).
(1)這次抽樣調查的學生人數一共有 人;
(2)求頻數分布表中 a 的值,并補全頻數分布直方圖; ,
(3)若該縣有 5000 名九年級學生,請你估計全縣九年級學生平均每天居家鍛煉時間不超過20分鐘的有多少人?
時間 x/分 | 人數/人 | 頻率 |
0<x≤10 | 102 | 25.5% |
10<x≤20 | 132 | 33% |
20<x≤30 | a | 17.5% |
30<x≤40 | 59 | 14.75% |
40<x≤50 | 29 | 7.25% |
50<x≤60 | 8 | 2% |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.將△ABC沿AB翻折后得到△ABD.
(1)試說明點D在⊙O上;
(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;
(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸交于A、B兩點,與
軸交于點C,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,-2),連接BC、AD.
(1)將矩形OBHC繞點B按逆時針旋轉90°后,再沿軸對折到矩形GBFE(點C與點E對應,點O與點G對應),求點E的坐標;
(2)設過點E的直線交AB于點P,交CD于點Q.
①當四邊形PQCB為平行四邊形時,求點P的坐標;
②是否存在點P,使直線PQ分梯形ADCB的面積為1∶3兩部分?若存在,求出點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AD=10cm,AB=4cm,動點P從點A出發,以2cm/s的速度沿AD向終點D移動,設移動時間為(s) .連接PC,以PC為一邊作正方形PCEF,連接DE、DF.
(1)求正方形PCEF的面積(用含的代數式來表示,不要求化簡),并求當正方形PCEF的面積為25 cm2時
的值;
(2)設△DEF的面積為(cm2),求
與
之間的函數關系式,并求當
為何值時?△DEF的面積取得最小值,這個最小值是多少?
(3)求當為何值時?△DEF為等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若商場為方便消費者購物,準備將原來的階梯式自動扶梯改造成斜坡式動扶梯,如圖所示,已知原階梯式自動扶梯AB長為10m,扶梯AB的坡度i為1:.改造后的斜坡式動扶梯的坡角∠ACB為15°,請你計算改造后的斜坡式自動扶梯AC的長度.
(結果精確到0.1m.參考數據:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com