【題目】如圖△ABC中,BC=3,以BC為直徑的⊙O交AC于點D,若D是AC中點,∠ABC=120°.
(1)求∠ACB的大;
(2)求點A到直線BC的距離.
【答案】(1)30°;(2).
【解析】解:(1)連接BD,
∵以BC為直徑的⊙O交AC于點D,∴∠BDC=90°。
∵D是AC中點,∴BD是AC的垂直平分線。
∴AB=BC。∴∠A=∠C。
∵∠ABC=120°,∴∠A=∠C=30°。即∠ACB=30°。
(2)過點A作AE⊥BC于點E,
∵BC=3,∠ACB=30°,∠BDC=90°,
∴cos30°=。∴CD=
。
∵AD=CD,∴AC=。
∵在Rt△AEC中,∠ACE=30°,∴。
∴點A到直線BC的距離為。
(1)根據垂直平分線的性質得出AB=BC,從而得出∠A=∠C=30°即可。
(2)根據BC=3,∠ACB=30°,∠BDC=90°,得出CD的長,從而求出AE的長度即可。
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=4,CD⊥AB于D,P是線段CD上一個動點,以P為直角頂點向下作等腰Rt△BPE,連結AE,DE.
(1)∠BAE的度數是否為定值?若是,求出∠BAE的度數;
(2)直接寫出DE的最小值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=4,射線BQ和AB互相垂直,點D是AB上的一個動點,點E在射線BQ上,BE=DB,作EF⊥DE,并截取EF=DE,連接AF并延長交射線BQ于點C.設BE=x,BC=y,則y關于x的函數解析式為______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一臺放置在水平桌面上的筆記本電腦,將其側面抽象成如右圖所示的幾何圖形,若顯示屏所在面的側邊AO與鍵盤所在面的側邊BO長均為24cm,點P為眼睛所在位置,D為AO的中點,連接PD,當PD?AO時,稱點P為“最佳視角點”,作PC?BC,垂足C在OB的延長線上,且BC=12cm.
(1)當PA=45cm時,求PC的長;
(2)若?AOC=120°時,“最佳視角點”P在直線PC上的位置會發生什么變化?此時PC的長是多少?請通過計算說明.(結果精確到0.1cm,可用科學計算器,參考數據: ,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:﹣4,|﹣2|,﹣2,﹣(﹣3.5),0,.
(1)在如圖所示的數軸上表示出以上各數;
(2)比較以上各數的大小,用“<”號連接起來;
_____<_____<______<______<______<______
(3)在以上各數中選擇恰當的數填在圖中這兩個圈的(重疊)部分.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】王老師將1個黑球和若干個白球放入一個不透明的口袋并攪勻,讓若干學生進行摸球實驗,每次摸出一個球(有放回),下表是活動進行中的一組統計數據.
摸球的次數n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數m | 23 | 31 | 60 | 130 | 203 | 251 |
摸到黑球的頻率 | 0.23 | 0.21 | 0.30 | 0.26 | 0.253 |
(1)補全上表中的有關數據,根據上表數據估計從袋中摸出一個球是黑球的概率是 ;(精確到0.01)
(2)估算袋中白球的個數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且=
.連接AF并延長交⊙O于點E,連接AD,DE.若CF=2,AF=3.下列結論:①△ADF∽△AED;②FG=2;③tan∠E=
;④S△DEF=4
.其中正確的是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A、B在數軸上分別表示數a,b.若A、B兩點間的距離記為d,則d和a,b之間的數量關系是d=|a-b|.
(1)數軸上有理數x與有理數-2所對應兩點之間的距離可以表示為______;
(2)|x+6|可以表示數軸上有理數x與有理數_______所對應的兩點之間的距離;
若|x+6|= |x -2|,則x=______;
(3)若a=1,b=-2,將數軸折疊,使得A點與﹣7表示的點重合,則B點與數______表示的點P重合;
(4)若數軸上M、N兩點之間的距離為11(M在N的左側),且M、N兩點經過(3)中折疊后互相重合,則M、N兩點表示的數分別是:M:_____, N:_______;
(5)在題(3)的條件下,點A為定點,點B、P為動點,若移動點B、P中一點后,能否使相鄰兩點間距離相等?若能,請寫出移動方案.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com