A. | 50° | B. | 60° | C. | 70° | D. | 75° |
分析 連接AO,BO,OE由切線的性質可得∠PAO=∠PBO=90°,結合已知條件和四邊形的內角和為360°可求出∠AOB的度數,再由切線長定理即可求出∠COD的度數.
解答 解:
連接AO,BO,OE,
∵PA、PB是⊙O的切線,
∴∠PAO=∠PBO=90°,
∵∠APB=60°,
∴∠AOB=360°-2×90°-60°=120°,
∵PA、PB、CD是⊙O的切線,
∴∠ACO=∠ECO,∠DBO=∠DEO,
∴∠AOC=∠EOC,∠EOD=∠BOD,
∴∠COD=∠COE+∠EOD=$\frac{1}{2}$∠AOB=60°.
故選B.
點評 本題考查了切線的性質及切線長定理,解答本題的關鍵是熟練掌握:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線,平分兩條切線的夾角.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 分類討論 | B. | 數形結合 | C. | 公理化 | D. | 轉化 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
①
| ②![]() | ||||||||||
③ y=kx+b | ④ y=|x| |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com