【題目】如圖,反比例函數y=(x>0)的圖象與直線y=x交于點M,∠AMB=90°,其兩邊分別與兩坐標軸的正半軸交于點A,B,四邊形OAMB的面積為6.
(1)求k的值;
(2)點P在反比例函數y=(x>0)的圖象上,若點P的橫坐標為3,∠EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點E,F,問是否存在點E,使得PE=PF?若存在,求出點E的坐標;若不存在,請說明理由.
【答案】(1)6;(2)E(4,0)或E(6,0).
【解析】
試題(1)過點M作MC⊥x軸于點C,MD⊥y軸于點D,根據AAS證明△AMC≌△BMD,那么S四邊形OCMD=S四邊形OAMB=6,根據反比例函數比例系數k的幾何意義得出k=6;
(2)先根據反比例函數圖象上點的坐標特征求得點P的坐標為(3,2).再分兩種情況進行討論:①如圖2,過點P作PG⊥x軸于點G,過點F作FH⊥PG于點H,交y軸于點K.根據AAS證明△PGE≌△FHP,進而求出E點坐標;②如圖3,同理求出E點坐標.
試題解析:解:(1)如圖1,過點M作MC⊥x軸于點C,MD⊥y軸于點D,則∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,∴△AMC≌△BMD,∴S四邊形OCMD=S四邊形OAMB=6,∴k=6;
(2)存在點E,使得PE=PF.
由題意,得點P的坐標為(3,2).
①如圖2,過點P作PG⊥x軸于點G,過點F作FH⊥PG于點H,交y軸于點K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,∴OE=OG+GE=3+1=4,∴E(4,0);
②如圖3,過點P作PG⊥x軸于點G,過點F作FH⊥PG于點H,交y軸于點K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,∴OE=OG+GE=3+3=6,∴E(6,0).
綜上所述,E(4,0)或E(6,0).
科目:初中數學 來源: 題型:
【題目】對于反比例函數y=-,下列說法不正確的是( )
A. 圖象經過點(1,-3)
B. 圖象分布在第二、四象限
C. 當x>0時,y隨x的增大而增大
D. 點A(x1,y1),B(x2,y2)都在反比例函數y=-的圖象上,若x1<x2,則y1<y2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點M,N的坐標分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點,則a的取值范圍是( 。
A. a≤﹣1或≤a<
B.
≤a<
C. a≤或a>
D. a≤﹣1或a≥
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰中,
,D為BC的中點,過點C作
于點G,過點B作
于點B,交CG的延長線于點F,連接DF交AB于點E.
(1)求證:;
(2)求證:AB垂直平分DF;
(3)連接AF,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知y是x的一次函數,當時,
;當
時,
,求:
(1)這個一次函數的表達式和自變量x的取值范圍
(2)當時,自變量x的值
(3)當時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在△ABC 中,AB、AC 邊的垂直平分線相交于點 O,分別交 BC 邊于點 M、N,連接 AM,AN.
(1)若△AMN 的周長為 6,求 BC 的長;
(2)若∠MON=30°,求∠MAN 的度數;
(3)若∠MON=45°,BM=3,BC=12,求 MN 的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com