【題目】如圖,已知拋物線(k為常數,且k>0)與x軸的交點為A、B,與y軸的交點為C,經過點B的直線
與拋物線的另一個交點為D.
(1)若點D的橫坐標為x= -4,求這個一次函數與拋物線的解析式;
(2)若直線m平行于該拋物線的對稱軸,并且可以在線段AB間左右移動,它與直線BD和拋物線分別交于點E、F,求當m移動到什么位置時,EF的值最大,最大值是多少?
(3)問原拋物線在第一象限是否存在點P,使得△APB∽△ABC?若存在,請求出這時k的值;若不存在,請說明理由.
【答案】(1) (2) 最大值是4(3)存在
【解析】分析:(1)先解方程k(x+2)(x﹣4)=0可得A(﹣2,0),B(4,0),再把B點坐標代入y=﹣x+b中求出得b=2,則可得到一次函數解析式為y=﹣
x+2,接著利用一次函數解析式確定D點坐標,然后把D點坐標代入代入y=k(x+2)(x﹣4)中求出k的值即可得到得拋物線解析式;
(2)利用二次函數和一次函數圖象上點的坐標特征,可設F(t,t2﹣
t﹣2),則E(t,﹣
t+2),﹣2≤t≤4,于是得到EF=﹣
t+2﹣(
t2﹣
t﹣2)=﹣
t2+4,然后根據二次函數的性質求解;
(3)作PH⊥x軸于H,如圖,先表示出C點坐標為(0,﹣8k),設P[n,k(n+2)(n﹣4)],根據相似三角形的判定方法,當∠PAB=∠CAB,AP:AB=AB:AC時,△APB∽△ABC;再根據正切定義.在Rt△APH中有tan∠PAH=.在Rt△OAC中有tan∠OAC=
=4k,則
=4k,解得n=8,于是得到P(8,40k),接著利用勾股定理計算出AP=10
,AC=2
,然后利用AP:AB=AB:AC得到10
2
=62,解得k1=
,k2=﹣
(舍去),于是可確定P點坐標.
詳解:(1)當y=0時,k(x+2)(x﹣4)=0,解得:x1=﹣2,x2=4,則A(﹣2,0),B(4,0),把B(4,0)代入y=﹣x+b得:﹣2+b=0,解得:b=2,所以一次函數解析式為y=﹣
x+2,當x=﹣4時,y=﹣
x+2=4,則D點坐標為(4,4),把D(﹣4,4)代入y=k(x+2)(x﹣4)得:k(﹣2)(﹣8)=4,解得:k=
,所以拋物線解析式為y=
(x+2)(x﹣4),即y=
x2﹣
x﹣2;
(2)設F(t,t2﹣
t﹣2),則E(t,﹣
t+2),﹣2≤t≤4,所以EF=﹣
t+2﹣(
t2﹣
t﹣2)=﹣
t2+4,所以當t=
(3)存在.
作PH⊥x軸于H,如圖,當x=0時,y=k(x+2)(x﹣4)=﹣8k,則C(0,﹣8k),設P[n,k(n+2)(n﹣4)],當∠PAB=∠CAB,AP:AB=AB:AC時,△APB∽△ABC;
在Rt△APH中,tan∠PAH=.在Rt△OAC中,tan∠OAC=
=4k,∴
=4k,解得:n=8,則P(8,40k),∴AP=
=
=10
,而AC=
=
=2
.∵AP:AB=AB:AC,∴APAC=AB2,即10
2
=62,∴5(16k2+1)=9,解得:k1=
,k2=﹣
(舍去),∴k=4
,P點坐標為(8,4
).
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如下圖所示,且關于x的一元二次方程ax2+bx+c-m=0沒有實數根,有下列結論:①b2-4ac>0;②abc<0;③m>2.其中,正確結論的個數是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】張老師打算在小明和小白兩位同學之間選一位同學參加數學競賽,他收集了小明、小白近期10次數學考試成績,并繪制了折線統計圖(如圖所示)
項目 | 眾數 | 中位數 | 平均數 | 方差 | 最高分 |
小明 | 85 | 85 | |||
小白 | 70,100 | 85 | 100 |
(1)根據折線統計圖,張老師繪制了不完整的統計表,請你補充完整統計表;
(2)你認為張老師會選擇哪位同學參加比賽?并說明你的理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線的頂點為D(-1,2),與x軸的一個交點A在點(-3,0)和(-2,0)之間,其部分圖象如圖,則以下結論:①
;②當x>-l時,y隨x增大而減。虎a+b+c<0;④若方程
沒有實數根,則m>2. 其中正確的結論有________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,大樓底右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上). 已知AB=80m,DE=10m,求障礙物B,C兩點間的距離.(結果精確到0.1m)
(參考數據: ,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小亮家與姥姥家相距24km. 小亮8:00從家出發,騎自行車去姥姥家,媽媽8:30從家出發,乘車沿相同路線去姥姥家. 在同一直角坐標系中,小亮和媽媽的行進路程S(km)與北京時間t(時)的函數圖象如圖所示. 根據圖象得到下列結論,其中錯誤的是( )
A. 小亮騎自行車的平均速度是12km/h
B. 媽媽比小亮提前0.5小時到達姥姥家
C. 媽媽在距家12km處追上小亮
D. 9:30媽媽追上小亮
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】依法納稅是每個公民應盡的義務.新稅法規定:居民個人的綜合所得,以每一納稅月收入減去費用5000元以及專項扣除、專項附加扣除和依法確定的其它扣除后的余額,為個人應納稅所得額.已知李先生某月的個人應納稅所得額比張先生的多1500元,個人所得稅稅率相同情況下,李先生的個人所得稅稅額為76.5元,而張先生的個人所得稅稅額為31.5元.求李先生和張先生應納稅所得額分別為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,,
,點B在x軸上,且
.
求點B的坐標;
求
的面積;
在y軸上是否存在P,使以A、B、P三點為頂點的三角形的面積為10?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:在數軸上點、
分別表示數
、
,則
、
兩點之間的距離
.
請回答下列問題:
()數軸上表示
和
的兩點之間的距離是__________.數軸上表示數
和
的兩點之間的距離表示為__________.數軸上表示數__________和__________的兩點之間的距離表示為
.
()七年級研究性學習小組在數學老師指導下,對式子進行探究:
.
①當表示數的點在
與
之間移動時,
的值總是一個固定的值為:__________.(直接寫出結果)
②要使,數軸上滿足條件的點表示的數字是:__________(直接寫出結果).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com