【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標系中,AB在x軸上,點G與點A重合,點F在AD上,三角板的直角邊EF交BC于點M,反比例函數y=(x>0)的圖象恰好經過點F,M.若直尺的寬CD=3,三角板的斜邊FG=
,則k=_____.
科目:初中數學 來源: 題型:
【題目】某工廠生產某種產品,每件產品的出廠價為50元,成本為25元.由于在生產過程中,平均每生產1件產品,有污水排出,所以為了凈化環境,工廠設計兩種方案對污水進行處理,并準備實施.
方案甲:工廠將污水排到污水廠統一處理,每處理需付14元的排污費;
方案乙:工廠將污水進行凈化處理后再排出,每處理污水所用原料費為2元,且每月凈化設備的損耗費為30000元.設工廠每月生產x件產品(x為正整數,
).
(1)根據題意填寫下表:
每月生產產品的數量/件 | 3500 | 4500 | 5500 | … |
方案甲處理污水的費用/元 | 31500 | … | ||
方案乙處理污水的費用/元 | 34500 | … |
(2)設工廠按方案甲處理污水時每月獲得的利潤為元,按方案乙處理污水時每月獲得的利潤為
元,分別求
,
關于x的函數解析式;
(3)根據題意填空:
①若該工廠按方案甲處理污水時每月獲得的利潤和按方案乙處理污水時每月獲得利潤相同,則該工廠每月生產產品的數量為_______件;
②若該工廠每月生產產品的數量為7500件時,則該工廠選用方案甲、方案乙中的方案_______處理污水時所獲得的利潤多;
③若該工廠每月獲得的利潤為81000元,則該工廠選用方案甲、方案乙中的方案________處理污水時生產產品的數量少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地區為了加大“退耕還林”的力度,出臺了一系列的激勵措施:在“退耕還林”過程中,每一年的林地面積達到10畝且每年的林地面積在增加的農戶,當年都可得生活補貼費2000元,且每超過10畝的部分還給予獎勵每畝a元,在林間還有套種其他農作物,平均每畝還有b元的收入.
下表是某農戶在頭兩年通過“退耕還林”每年獲得的總收入情況:
(注:年總收入=生活補貼量+政府獎勵量+種農作物收入)
(1)試根據以上提供的資料確定a、b的值.
(2)從2003年起,如果該農戶每年新增林地的畝數比前一年按相同的增長率增長,那么2005年該農戶獲得的總收入達到多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△ABC三個頂點坐標分別為A(-2,4),B(-2,1),C(-5,2).
(1)請畫出△ABC關于x軸對稱的△A1B1C1;
(2)將△A1B1C1的三個頂點的橫坐標與縱坐標同時乘-2,得到對應的點A2,B2,C2,請畫出△A2B2C2;
(3)△A1B1C1與△A2B2C2面積之比為 (不寫解答過程,直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鐘南山院士談到防護新型冠狀病毒肺炎時說:“我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內注意通風,勤洗手,多運動,少熬夜.”某社區為了加強社區居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區居民在線參與作答年新型冠狀病毒防治全國統一考試全國卷試卷滿分分,社區管理員隨機從有
人的某小區抽取
名人員的答卷成績,根據他們的成績數據繪制了如下的表格和統計圖:
等級 | 成績 | 頻數 | 頻率 |
合計 |
根據上面提供的信息,回答下列問題: .
(1)統計表中的 ,
,
;
(2)請補全條形統計圖;
(3)根據抽樣調查結果,請估計該小區答題成績為“級”的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,△ABC的頂點A,C分別是直線y=﹣x+4與坐標軸的交點,點B的坐標為(﹣2,0),點D是邊AC上的一點,DE⊥BC于點E,點F在邊AB上,且D,F兩點關于y軸上的某點成中心對稱,連結DF,EF.設點D的橫坐標為m,EF2為l,請探究:
①線段EF長度是否有最小值.
②△BEF能否成為直角三角形.
小明嘗試用“觀察﹣猜想﹣驗證﹣應用”的方法進行探究,請你一起來解決問題.
(1)小明利用“幾何畫板”軟件進行觀察,測量,得到l隨m變化的一組對應值,并在平面直角坐標系中以各對應值為坐標描點(如圖2).請你在圖2中連線,觀察圖象特征并猜想l與m可能滿足的函數類別.
(2)小明結合圖1,發現應用三角形和函數知識能驗證(1)中的猜想,請你求出l關于m的函數表達式及自變量的取值范圍,并求出線段EF長度的最小值.
(3)小明通過觀察,推理,發現△BEF能成為直角三角形,請你求出當△BEF為直角三角形時m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是⊙O的直徑,BA=BC,BD交AC于點E,點F在DB的延長線上,且∠BAF=∠C.
(1)求證:AF是⊙O的切線;
(2)若BC=2,BE=4,求⊙O半徑r.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】函數和
在第一象限內的圖象如圖所示,點P是
的圖象上一動點,作PC⊥x軸于點C,交
的圖象于點A,作PD⊥y軸于點D,交
的圖象于點B,給出如下結論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發生變化;④PA=3AC,其中正確的結論序號是( )
A.①③B.②③④C.①③④D.①④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在坐標系中放置一菱形 OABC,已知∠ABC=60°,點 B 在 y 軸上,OA=1,先將菱形 OABC 沿 x 軸的正方向無滑動翻轉,每次翻轉 60°,連續翻轉2019次,點 B 的落點依次為 B1,B2,B3,…,則 B2 019 的坐標為( )
A.(1010,0)B.(1310.5, )C.(1345,
)D.(1346,0)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com