精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtABC中,∠ABC=90°AB=BC=4,將ABC繞點A順時針旋轉60°,得到ADE,連結BE,則BE的長為_____

【答案】

【解析】解:連結CE,設BEAC相交于點F,如下圖所示,

∵Rt△ABC中,AB=BC,∠ABC=90°,

∴∠BCA=∠BAC=45°,

∵Rt△ABC繞點A逆時針旋轉60°Rt△ADE重合,

∴∠BAC=∠DAE=45°,AC=AE,

又∵旋轉角為60°,

∴∠BAD=∠CAE=60°,

∴△ACE是等邊三角形

AC=CE=AE=4,

在△ABE與△CBE, ,

∴△ABE≌△CBE,

∴∠ABE=∠CBE=45°,∠CEB=∠AEB=30°,

∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°,

∴∠AFB=∠AFE=90°,

Rt△ABF中,由勾股定理得,

BF=AF=AB=2,

又在Rt△AFE中,∠AEF=30°,∠AFE=90°,

FE=AF=2,

BE=BF+FE=

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,D上一點,點C在直徑BA的延長線上,且

判斷直線CD的位置關系,并說明理由.

過點B作的切線交CD的延長線于點E,若,求的半徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數的圖象與反比例函數的圖象交于A-2,-1)、B1,n)兩點。

(1)利用圖中條件求反比例函數和一次函數的解析式;

(2)根據圖象寫出使一次函數的值大于反比例函數的值的的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,,,點的坐標為,點的坐標為,點的坐標是__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,線段AB上順次有三個點C,D,E,把線段AB分為了2:3:4:5四部分,且AB=28

1)求線段AE的長;

2)若M,N分別是DE,EB的中點,求線段MN的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F是對角線BD上的點,∠1=∠2.

求證:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一條筆直的公路上有AB兩地.甲、乙兩人同時出發,甲騎電動車從A地勻速前往B地,行走到一半路程時出現故障后停車維修,修好車后以原速繼續行駛到B地;乙騎摩托車從B地勻速前往A地,到達A地后立即按原路原速返回,結果兩人同時到B.甲、乙兩人與B地的距離y(km)與乙行駛時間x(h)之間的函數圖象如圖所示.

1)求甲修車前的速度.

2)求甲、乙第一次相遇的時間.

3)若兩人之間的距離不超過10km時,能夠用無線對講機保持聯系,請直接寫出乙在行進中能用無線對講機與甲保持聯系的x取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為迎接國家衛生城市復檢,某市環衛局準備購買A、B兩種型號的垃圾箱,通過市場調研得知:購買3A型垃圾箱和2B型垃圾箱共需540元;購買2A型垃圾箱比購買3B型垃圾箱少用160元.

(1)每個A型垃圾箱和B型垃圾箱各多少元?

(2)現需要購買A,B兩種型號的垃圾箱共300個,分別由甲、乙兩人進行安裝,要求在12天內完成(兩人同時進行安裝).已知甲負責A型垃圾箱的安裝,每天可以安裝15個,乙負責B型垃圾箱的安裝,每天可以安裝20個,生產廠家表示若購買A型垃圾箱不少于150個時,該型號的產品可以打九折;若購買B型垃圾箱超過150個時,該型號的產品可以打八折,若既能在規定時間內完成任務,費用又最低,應購買A型和B型垃圾箱各多少個?最低費用是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知ABC中,∠C是其最小的內角,如果過點B的一條直線把這個三角形分割成了兩個三角形,其中一個為等腰三角形,另一個為直角三角形,則稱這條直線為ABC關于點B的奇異分割線.

例如:圖1,在RtABC中,∠A90°,∠C20°,過頂點B的一條直線BDAC于點D,且∠DBC20°,則直線BDABC的關于點B的奇異分割線.

1)如圖2,在ABC中,若∠A50°,∠C20°.請過頂點B在圖2中畫出ABC關于點B的奇異分割線BDAC于點D,此時∠ADB   度;

2)在ABC中,∠C30°,若ABC存在關于點B的奇異分割線,畫出相應的ABC及分割線BD,并直接寫出此時∠ABC的度數(要求在圖中標注∠A、∠ABD及∠DBC的度數).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视