精英家教網 > 初中數學 > 題目詳情

【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數關系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數和反比例函數的關系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數法可求得函數解析式;

(2)把t=2代入(1)中二次函數解析式即可.

詳解:(1)v=at2的圖象經過點(1,2),

a=2.

∴二次函數的解析式為:v=2t2,(0≤t≤2);

設反比例函數的解析式為v=

由題意知,圖象經過點(2,8),

k=16,

∴反比例函數的解析式為v=(2<t≤5);

(2)∵二次函數v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點睛:本題考查了反比例函數和二次函數的應用.解題的關鍵是從圖中得到關鍵性的信息:自變量的取值范圍和圖象所經過的點的坐標.

型】解答
束】
24

【題目】閱讀材料:小胖同學發現這樣一個規律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發現若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發現;

借助小胖同學總結規律,構造“手拉手”圖形來解答下面的問題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點E為ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求EAF的度數(用含有m的式子表示).

【答案】(1)見解析 (2)見解析 (3)

【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明DAB≌△EAC即可;

(2)如圖2中,延長DCE,使得DB=DE.首先證明BDE是等邊三角形,再證明ABD≌△CBE即可解決問題;

(3)如圖3中,將AE繞點E逆時針旋轉得到AG,連接CG、EG、EF、FG,延長EDM,使得DM=DE,連接FM、CM.想辦法證明AFE≌△AFG,可得∠EAF=FAG=m°.

(1)證明:如圖1中,

∵∠BAC=DAE,

∴∠DAB=EAC,

DABEAC中,

,

∴△DAB≌△EAC,

BD=EC.

(2)證明:如圖2中,延長DCE,使得DB=DE.

DB=DE,BDC=60°,

∴△BDE是等邊三角形,

∴∠BD=BE,DBE=ABC=60°,

∴∠ABD=CBE,

AB=BC,

∴△ABD≌△CBE,

AD=EC,

BD=DE=DC+CE=DC+AD.

AD+CD=BD.

(3)如圖3中,將AE繞點E逆時針旋轉得到AG,連接CG、EG、EF、FG,延長EDM,使得DM=DE,連接FM、CM.

由(1)可知EAB≌△GAC,

∴∠1=2,BE=CG,

BD=DC,BDE=CDM,DE=DM,

∴△EDB≌△MDC,

EM=CM=CG,EBC=MCD,

∵∠EBC=ACF,

∴∠MCD=ACF,

∴∠FCM=ACB=ABC,

∴∠1=3=2,

∴∠FCG=ACB=MCF,

CF=CF,CG=CM,

∴△CFG≌△CFM,

FG=FM,

ED=DM,DFEM,

FE=FM=FG,

AE=AG,AF=AF,

∴△AFE≌△AFG,

∴∠EAF=FAG=m°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(引例)

如圖1,點A、B、D在同一條直線上,在直線同側作兩個等腰直角三角形△ABC和△BDE,BABC,BEBD,連接AE、CD.則AECD的關系是   

(模型建立)

如圖2,在△ABC和△BDE中,BABC,BEBD,∠ABC=∠DBEα,連接AECD相交于點H.求證:①AECD;②∠AHCα

(拓展應用)

如圖3,在四邊形ABCD中,對角線ACBD交于點O,∠BDC90°,BDCD,∠BAD45°.若AB3,AD4,求AC2的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】河西中學九年級共有9個班,300名學生,學校要對該年級學生數學學科學業水平測試成績進行抽樣分析,請按要求回答下列問題:

收集數據

(1)若從所有成績中抽取一個容量為36的樣本,以下抽樣方法中最合理的是   

①在九年級學生中隨機抽取36名學生的成績;

②按男、女各隨機抽取18名學生的成績;

③按班級在每個班各隨機抽取4名學生的成績.

整理數據

(2)將抽取的36名學生的成績進行分組,繪制頻數分布表和成績分布扇形統計圖如下.請根據圖表中數據填空:

C類和D類部分的圓心角度數分別為   °、   °;

②估計九年級A、B類學生一共有   名.

成績(單位:分)

頻數

頻率

A類(80~100)

18

B類(60~79)

9

C類(40~59)

6

D類(0~39)

3

分析數據

(3)教育主管部門為了解學校教學情況,將河西、復興兩所中學的抽樣數據進行對比,得下表:

學校

平均數(分)

極差(分)

方差

A、B類的頻率和

河西中學

71

52

432

0.75

復興中學

71

80

497

0.82

你認為哪所學校本次測試成績較好,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】反比例函數和一次函數y=k2x+b的圖象交于點M(3,﹣)和點N(﹣1,2),則k1=_____,k2=____,一次函數的圖象交x軸于點_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,D為ABC內一點, BAD=15°,AD=AC,CEAD于E,且CE=5.

(1)求BC的長;

(2)求證:BD=CD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC在直角坐標系內的位置如圖所示.

1)請直接寫出A、B、C的坐標;

2)請在這個坐標系內畫出A1B1C1,使A1B1C1ABC關于y軸對稱,并寫出B1的坐標;

3)計算A1B1C1面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是_____,(請直接填寫序號)

223;②四邊形的內角和與外角和相等;③的立方根為4;

④一元二次方程x2﹣6x=10無實數根;

⑤若一組數據7,4,x,3,5,6的眾數和中位數都是5,則這組數據的平均數也是5.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视