【題目】如圖,在平面直角坐標系中,拋物線與
軸交于點
,點
,與
軸交于點
,連接
,又已知位于
軸右側且垂直于
軸的動直線
,沿
軸正方向從
運動到
(不含
點和
點),且分別交拋物線,線段
以及
軸于點
.
(1)求拋物線的表達式;
(2)連接,
,當直線
運動時,求使得
和
相似的點
的坐標;
(3)作,垂足為
,當直線
運動時,求
面積的最大值.
【答案】(1);(2)
點的坐標為
;(3)
.
【解析】
(1)將點A、B、C的坐標代入二次函數表達式,即可求解;
(2)只有當∠PEA=∠AOC時,PEA△∽AOC,可得:PE=4AE,設點P坐標(4k-2,k),即可求解;
(3)利用Rt△PFD∽Rt△BOC得:,再求出PD的最大值,即可求解.
(1)由已知,將代入
,∴
.
將點和
代入
,得
,
解得.∴拋物線的表達式為
.
(2)∵,
,
∴,
.
∵軸,
∴,
∵,
∴只有當時,
,
此時,即
,
∴.
設點的縱坐標為
,則
,
,
∴,
∴點的坐標為
,將
代入
,得
,
解得(舍去),
.
當時,
.
∴點的坐標為
.
(3)在中,
,
∵軸,
∴,
∴,
∴,
∴.
由,知
,又
,
∴,
又.
∴.
∴當最大時,
最大.
由,
可解得
所在直線的表達式為
.
設,則
,
∴.
∴當時,
有最大值4.
∴當時,
.
科目:初中數學 來源: 題型:
【題目】春節期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數量不少于乙種商品數量的4倍,請你求出獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校舉行了創建全國文明城市知識競賽活動,初一年級全體同學參加了競賽.收集數據:現隨機抽取初一年級30名同學“創文知識競賽”成績,分數如下(單位:分):
90 | 85 | 68 | 92 | 81 | 84 | 95 | 93 | 87 | 89 | 78 | 99 | 89 | 85 | 97 |
88 | 81 | 95 | 86 | 98 | 95 | 93 | 89 | 86 | 84 | 87 | 79 | 85 | 89 | 82 |
⑴請將圖表中空缺的部分補充完整;
⑵學校決定表彰“創文知識競賽”成績在90分以上的同學,根據上表統計結果估計該校初一年級360人中,約有多少人將獲得表彰;
⑶“創文知識競賽”中,受到表彰的小紅同學得到了印有龔扇、剪紙、彩燈、恐龍圖案的四枚紀念章,她從中選取兩枚送給弟弟,則小紅送給弟弟的兩枚紀念章中,恰好有恐龍圖案的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】教材呈現:下圖是華師版八年級上冊數學教材第94頁的部分內容.
線段垂直平分線
我們已知知道線段是軸對稱圖形,線段的垂直一部分線是線段的對稱軸,如圖直線是線段
的垂直平分線,
是
上任一點,連結
、
,將線段
與直線
對稱,我們發現
與
完全重合,由此都有:線段垂直平分線的性質定理,線段垂直平分線上的點到線段的距離相等.
已知:如圖,,垂足為點
,
,點
是直線
上的任意一點.
求證:.
圖中的兩個直角三角形和
,只要證明這兩個三角形全等,便可證明
(請寫出完整的證明過程)
請根據教材中的分析,結合圖①,寫出“線段垂直平分線的性質定理”完整的證明過程,定理應用.
(1)如圖②,在中,直線
、
、
分別是邊
、
、
的垂直平分線.
求證:直線、
、
交于點.
(2)如圖③,在中,
,邊
的垂直平分線交
于點
,邊
的垂直平分線交
于點
,若
,
,則
的長為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠生產部門為了解本部門工人的生產能力情況,進行了抽樣調查.該部門隨機抽取了30名工人某天每人加工零件的個數,數據如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數據,得到條形統計圖:
樣本數據的平均數、眾數、中位數如下表所示:
統計量 | 平均數 | 眾數 | 中位數 |
數值 | 23 | m | 21 |
根據以上信息,解答下列問題:
(1)上表中眾數m的值為 ;
(2)為調動工人的積極性,該部門根據工人每天加工零件的個數制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應根據 來確定獎勵標準比較合適.(填“平均數”、“眾數”或“中位數”)
(3)該部門規定:每天加工零件的個數達到或超過25個的工人為生產能手.若該部門有300名工人,試估計該部門生產能手的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE于點G,BG=4,則△EFC的周長為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】群芳雅苑花卉基地出售兩種花卉,其中馬蹄蓮每株4.5元,康乃馨每株6元.如果同一客戶所購的馬蹄蓮數量多于1000株,那么所有的馬蹄蓮每株還可優惠0.3元.現某鮮花店向群芳雅苑花卉基地采購馬蹄蓮800~1200株、康乃馨若干株本次采購共用了9000元.然后再以馬蹄蓮每株5.5元、康乃馨每株8元的價格賣出.(注:800~1200株表示采購株數大于或等于800株,且小于或等于1200株;利潤=銷售所得金額﹣進貨所需金額)
(1)設鮮花店銷售完這兩種鮮花獲得的利潤為y元,采購馬蹄蓮x株,求y與x之間的函數關系式;
(2)若該鮮花店購進的馬蹄蓮多于1000株,采購馬蹄蓮多少時才能使獲得的利潤不少于2890元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com