【題目】已知直線y=x+3與x軸、y軸分別交于A,B點,與y=(x<0)的圖象交于C、D點,E是點C關于點A的中心對稱點,EF⊥OA于F,若△AOD的面積與△AEF的面積之和為
時,則k=_____.
科目:初中數學 來源: 題型:
【題目】我們規定:平面內點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(1,0)的距離跨度______________;
B(-,
)的距離跨度____________;
C(-3,-2)的距離跨度____________;
②根據①中的結果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________.
(2)如圖2,在平面直角坐標系xOy中,圖形G2為以D(-1,0)為圓心,2為半徑的圓,直線y=k(x-1)上存在到G2的距離跨度為2的點,求k的取值范圍.
(3)如圖3,在平面直角坐標系xOy中,射線OP:y=x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運動,若射線OP上存在點到⊙E的距離跨度為2,求出圓心E的橫坐標xE的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某興趣小組用無人機進行航拍測高,無人機從1號樓和2號樓的地面正中間B點垂直起飛到高度為50米的A處,測得1號樓頂部E的俯角為60°,測得2號樓頂部F的俯角為45°.已知1號樓的高度為20米,則2號樓的高度為_____米(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點,
的長為( )
A.B.
C.πD.2π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ABC,AC=8,AB=4,以點B為圓心作圓,當⊙B與線段AC只有一個交點時,則⊙B的半徑的取值范圍是( )
A.rB =B.4 < rB ≤
C.rB = 或4 < rB ≤
D.rB為任意實數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,點O是AB邊上動點,以O為圓心,OB為半徑的⊙O與邊BC的另一交點為D,過點D作AB的垂線,交⊙O于點E,聯結BE、AE
(1)如圖(1),當AE∥BC時,求⊙O的半徑長;
(2)設BO=x,AE=y,求y關于x的函數關系式,并寫出定義域;
(3)若以A為圓心的⊙A與⊙O有公共點D、E,當⊙A恰好也過點C時,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小明設計的“在一個平行四邊形內作菱形”的尺規作圖過程.
已知:四邊形是平行四邊形.
求作:菱形(點
在
上,點
在
上).
作法:①以為圓心,
長為半徑作弧,交
于點
;
②以為圓心,
長為半徑作弧,交
于點
;
③連接.所以四邊形
為所求作的菱形.
根據小明設計的尺規作圖過程,
(1)使用直尺和圓規,補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵,
,
∴ = .
在中,
.
即.
∴四邊形為平行四邊形.
∵,
∴四邊形為菱形( )(填推理的依據).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.
(1)連接BC,求證:BC=OB;
(2)E是中點,連接CE,BE,若BE=2,求CE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com