【題目】如圖,在△ABC中,D、E分別是AB、AC邊上的點,點F在BC的延長線上,DE∥BC,若∠A=48°,∠1=54°,則下列正確的是( 。
A. ∠2=48°B. ∠2=54°C. D.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點為D點.
(1)求此拋物線解析式;
(2)如圖1,點P為拋物線上的一個動點,且在對稱軸右側,若△ADP面積為3,求點P的坐標;
(3)在(2)的條件下,PA交對稱軸于點E,如圖2,過E點的任一條直線與拋物線交于M,N兩點,直線MD交直線y=﹣3于點F,連結NF,求證:NF∥y軸.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:一元二次方程(k-1)x2-2kx+k+2=0有兩個不相等的實數根.
(1)求k的取值范圍;
(2)設x1,x2是方程的兩個不相等的實數根,且滿足(k-1)x12+2kx2+k+2=4x1x2.求k的值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知x1,x2 是關于x的方程(x-2)(x-m)=(p-2)(p-m)的兩個實數根.
(1)求x1,x2 的值;
(2)若x1,x2 是某直角三角形的兩直角邊的長,問當實數m,p滿足什么條件時,此直角三角形的面積最大?并求出其最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某中學學生對“厲行勤儉節約,反對鋪張浪費”主題活動的參與情況,小強在全校范圍內隨機抽取了若干名學生并就某日午飯浪費飯菜情況進行了調查,將調查內容分為四組:飯和菜全部吃完;
:有剩飯但菜吃完;
:飯吃完但菜有剩;
:飯和菜都有剩.根據調查結果,繪制了如圖所示兩幅不完整的統計圖.
回答下列問題:
(1)這次被抽查的學生共有 人,扇形統計圖中,“組”所對應的圓心角的度數為 ;
(2)補全條形統計圖;
(3)已知該中學共有學生人,請估計這日午飯有剩飯的學生人數,若按平均每人剩
克米飯計算,這日午飯將浪費多少千克米飯?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,△ABC是直角三角形,∠ACB=90°,點A,C的坐標分別為A(﹣3,0),C(1,0),BC=AC
(1)求過點A,B的直線的函數表達式;
(2)在x軸上找一點D,連接DB,使得△ADB與△ABC相似(不包括全等),并求點D的坐標;
(3)在(2)的條件下,如P,Q分別是AB和AD上的動點,連接PQ,設AP=DQ=m,問是否存在這樣的m,使得△APQ與△ADB相似?如存在,請求出m的值;如不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】使得函數值為零的自變量的值稱為函數的零點。例如,對于函數,令y=0,可得x=1,我們就說1是函數
的零點。
己知函數(
m為常數)。
(1)當=0時,求該函數的零點;
(2)證明:無論取何值,該函數總有兩個零點;
(3)設函數的兩個零點分別為和
,且
,此時函數圖象與x軸的交點分
別為A、B(點A在點B左側),點M在直線上,當MA+MB最小時,求直線AM的函數解析式。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:在四邊形ABFC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且CF=AE;
(1)試判斷四邊形BECF是什么四邊形?并說明理由.
(2)當∠A的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com