精英家教網 > 初中數學 > 題目詳情

【題目】如圖,O是ABC的外接圓,ABC=45°,AD是O的切線交BC的延長線于D,AB交OC于E

1求證:ADOC;

2若AE=2,CE=2O的半徑和線段BE的長

【答案】1證明見解析;2

【解析】

試題分析:1連結OA,根據切線的性質得到OAAD,再根據圓周角定理得到AOC=2ABC=90°,然后根據平行線的判定即可得到結論;

2O的半徑為R,則OA=R,OE=R-2,AE=2,在RtOAE中根據勾股定理可計算出R=4;作OHAB于H,根據垂徑定理得AH=BH,再利用面積法計算出OH=,然后根據勾股定理計算出AH=,則HE=AE-AH=2-=,再利用BE=BH-HE進行計算

試題解析:1連結OA,如圖,

AD是O的切線,

OAAD,

∵∠AOC=2ABC=2×45°=90°

OAOC,

ADOC;

2O的半徑為R,則OA=R,OE=R-2,AE=2,

在RtOAE中,AO2+OE2=AE2,

R2+R-22=22,解得R=4,

作OHAB于H,如圖,OE=OC-CE=4-2=2,

則AH=BH,

OHAE=OEOA,

OH==

在RtAOH中,AH=,

HE=AE-AH=2-=

BH=,

BE=BH-HE=-=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】六一兒童節前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數進行抽樣統計,發現各班留守兒童人數分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:

(1)該校有_____個班級,補全條形統計圖;

(2)求該校各班留守兒童人數數據的平均數,眾數與中位數;

(3)若該鎮所有小學共有60個教學班,請根據樣本數據,估計該鎮小學生中,共有多少名留守兒童.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖為二次函數y=ax2+bx+c的圖象,在下列說法中:①ac<0;a+b+c>0;③方程ax2+bx+c=0的根是x1=﹣1,x2=3; b2﹣4ac>0;⑤當x>1時,yx的增大而增大;正確的說法有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,則∠B=( )

A. 40° B. 30° C. 25° D. 22.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,AB⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E⊙O上.

1)若∠AOD=52°,求∠DEB的度數;

2)若OC=3,OA=5,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BC=4,面積是16,AC的垂直平分線EF分別交AC,AB邊于點E、F,若點DBC邊上的中點,點M為線段EF一動點,則CDM周長的最小值為(

A.4B.8C.10D.12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,頂點為C的拋物線y=ax2+bx(a>0)經過點Ax軸正半軸上的點B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.

(1)求這條拋物線的表達式;

(2)過點CCE⊥OB,垂足為E,點Py軸上的動點,若以O、C、P為頂點的三角形與△AOE相似,求點P的坐標;

(3)若將(2)的線段OE繞點O逆時針旋轉得到OE′,旋轉角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊三角形的邊長為4,的中心,.繞點旋轉,分別交線段兩點,連接,給出下列四個結論:;;③四邊形的面積始終等于;④△周長的最小值為6,上述結論中正確的個數是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在每個小正方形的邊長均為1的方格紙中有線段AB,其中點AB均在小正方形的頂點上.

1)在方格紙中畫出以BC為底的鈍角等腰三角形ABC,且點C在小正方形的頂點上;

2)將(1)中的△ABC繞點C逆時針旋轉90°得到△DEC(點A的對應點是點D,點B的對應點是點E),畫出△CDE;

3)在(2)的條件下,連接BE,請直接寫出△BCE的面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视