精英家教網 > 初中數學 > 題目詳情

【題目】如圖(1),AB4AC⊥AB,BD⊥AB,ACBD3.點 P 在線段 AB 上以 1的速度由點 A 向點 B 運動,同時,點 Q 在線段 BD 上由點 B 向點 D 運動.它們運動的時間為 s).

1)若點 Q 的運動速度與點 P 的運動速度相等,當1 時,△ACP △BPQ 是否全等,請說明理由, 并判斷此時線段 PC 和線段 PQ 的位置關系;

2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB∠DBA60°”,其他條件不變設點 Q 的運動速度為,是否存在實數,使得△ACP △BPQ 全等?若存在,求出相應的、的值;若不存在,請說明理由.

【答案】1)全等,垂直,理由詳見解析;(2)存在,

【解析】

1)在t =1的條件下,找出條件判定△ACP和△BPQ全等,再根據全等三角形的性質和直角三角形的兩個銳角互余的性質,可證∠CPQ= 90°,即可判斷線段 PC 和線段 PQ 的位置關系;
2)本題主要在動點的條件下,分情況討論,利用三角形全等時對應邊相等的性質進行解答即可.

(1)t=1時,AP= BQ=1, BP= AC=3,

又∠A=B= 90°,

在△ACP和△BPQ中,

△ACP≌△BPQ(SAS).

∴∠ACP=BPQ ,

∴∠APC+BPQ=APC+ACP = 90*.

∴∠CPQ= 90°,

即線段PC與線段PQ垂直;

(2)①若△ACP≌△BPQ,

AC= BP,AP= BQ,

解得;

②若△ACP≌△BQP

AC= BQ,AP= BP,

解得:

綜上所述,存在使得△ACP與△BPQ全等.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下列說法正確的有( )

①兩條直線相交,交點叫垂足;

②在同一平面內,過一點有且只有一條直線與已知直線垂直;

③在同一平面內,一條直線有且只有一條垂線;

④在同一平面內,一條線段有無數條垂線;

⑤過一點可以向一條射線或線段所在的直線作垂線;

⑥若,則的垂線,不是的垂線.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是我縣某養雞場20012006年的養雞統計圖:

1)從圖中你能得到什么信息.

2)各年養雞多少萬只?

3)所得(2)的數據都是準確數嗎?

4)這張圖與條形統計圖比較,有什么優點?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,△ABC的頂點均在格點上,直線a為對稱軸,點A,點C在直線a上.

1)作△ABC關于直線a的軸對稱圖形△ADC

2)若∠BAC35°,則∠BDA   ;

3)△ABD的面積等于   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:

某些代數恒等式可用一些卡片拼成的圖形的面積來解釋.例如,圖①可以解釋,因此,我們可以利用這種方法對某些多項式進行因式分解.

根據閱讀材料回答下列問題:

1)如圖②所表示的因式分解的恒等式是________________________.

2)現有足夠多的正方形和長方形卡片(如圖③),試畫出一個用若干張1號卡片、2號卡片和3號卡片拼成的長方形(每兩張卡片之間既不重疊,也無空隙),使該長方形的面積為,并利用你畫的長方形的面積對進行因式分解.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】《算經十書》是指漢、唐一千多年間的十部著名的數學著作,十部書的名稱是:《周髀算經》、《九章算術》、《海島算經》、《張丘建算經》、《夏侯陽算經》、《五經算術》、《緝古算經》、《綴術》、《五曹算經》、《孫子算經》.其中在《孫子算經》中有一道題:今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何?大致意思是:用一根繩子去量一根木條,繩子剩余尺;將繩子對折再量木條,木條剩余尺,問繩子、木條長多少尺?,設繩子長為尺,木條長為尺,根據題意,所列方程組正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,EFAD,∠1=∠2.說明:∠DGA+∠BAC180°.請將說明過程填寫完整.

解:∵EFAD(已知),

∴∠2________________________________).

又∵∠1=∠2____________),

∴∠1_________________).

AB________________________________).

∴∠DGA+∠BAC180°______________________________).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,線段AB=5,AD=4,∠A=90°,DP∥AB,點C為射線DP上一點,BE平分∠ABC交線段AD于點E(不與端點A、D重合).

(1)當∠ABC為銳角,且tan∠ABC=2時,求四邊形ABCD的面積;

(2)當△ABE△BCE相似時,求線段CD的長;

(3)設CD=x,DE=y,求y關于x的函數關系式,并寫出定義域.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视