【題目】如圖1,過點A(0,4)的圓的圓心坐標為C(2,0),B是第一象限圓弧上的一點,且BC⊥AC,拋物線y= x2+bx+c經過C、B兩點,與x軸的另一交點為D.
(1)點B的坐標為( , ),拋物線的表達式為;
(2)如圖2,求證:BD∥AC;
(3)如圖3,點Q為線段BC上一點,且AQ=5,直線AQ交⊙C于點P,求AP的長.
【答案】
(1)6;2;y= x2+
x﹣7
(2)
證明:在拋物線表達式y= x2+
x﹣7中,令y=0,即
x2+
x﹣7=0,
解得x=2或x=7,∴D(7,0).
如答圖2所示,
過點B作BE⊥x軸于點E,則DE=OD﹣OE=1,CD=OD﹣OC=5.
在Rt△BDE中,由勾股定理得:BD= =
=
;
在Rt△BCE中,由勾股定理得:BC= =
=
.
在△BCD中,BD= ,BC=
,CD=5,
∵BD2+BC2=CD2
∴△BCD為直角三角形,∠CBD=90°,
∴∠CBD=∠ACB=90°,
∴AC∥BD
(3)
解:如答圖3所示:
由(2)知AC=BC= ,又AQ=5,
則在Rt△ACQ中,由勾股定理得:CQ= =
=
.
過點C作CF⊥PQ于點F,
∵S△ACQ= ACCQ=
AQCF,
∴CF= =
=2.
在Rt△ACF中,由勾股定理得:AF= =
=4.
由垂徑定理可知,AP=2AF,
∴AP=8.
【解析】(1.)解:如答圖1所示,過點B作BE⊥x軸于點E.
∵AC⊥BC,
∴∠ACO+∠BCE=90°,
∵∠ACO+∠OAC=90°,∠BCE+∠CBE=90°,
∴∠OAC=∠BCE,∠ACO=∠CBE.
∵在△AOC與△CEB中,
∴△AOC≌△CEB(ASA).
∴CE=OA=4,BE=OC=2,
∴OE=OC+CE=6.
∴B點坐標為(6,2).
∵點C(2,0),B(6,2)在拋物線y= x2+bx+c上,
∴ ,
解得b= ,c=﹣7.
∴拋物線的表達式為:y= x2+
x﹣7.
【考點精析】本題主要考查了二次函數的性質的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】周末,小明騎自行車從家里出發到野外郊游.從家出發1小時后到達南亞所(景點),游玩一段時間后按原速前往湖光巖.小明離家1小時50分鐘后,媽媽駕車沿相同路線前往湖光巖,如圖是他們離家的路程y(km)與小明離家時間x(h)的函數圖象.
(1)求小明騎車的速度和在南亞所游玩的時間;
(2)若媽媽在出發后25分鐘時,剛好在湖光巖門口追上小明,求媽媽駕車的速度及CD所在直線的函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線m,n的夾角為35°,相交于點O,
(1)作出△ABC關于直線m的對稱△DEF;
(2)作出△DEF關于直線n的對稱△PQR;
(3)△PQR還可以由△ABC經過一次怎樣的變換得到.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC與BD交于點O,延長BC到E,使得CE=AD,連接DE.
(1)求證:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】當前,“校園手機”現象已經受到社會廣泛關注,某數學興趣小組對“是否贊成中學生帶手機進校園”的問題進行了社會調查.小文將調查數據作出如下不完整的整理: 頻數分布表
看法 | 頻數 | 頻率 |
贊成 | 5 | |
無所謂 | 0.1 | |
反對 | 40 | 0.8 |
(1)請求出共調查了多少人;并把小文整理的圖表補充完整;
(2)小麗要將調查數據繪制成扇形統計圖,則扇形圖中“贊成”的圓心角是多少度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉90°后,得到△A′O′B,且反比例函數y= 的圖象恰好經過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,連接對角線AC、BD,將△ABC沿BC方向平移,使點B移到點C,得到△DCE.
(1)求證:△ACD≌△EDC;
(2)請探究△BDE的形狀,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com