【題目】在正方形ABCD中,點E為對角線AC(不含點A)上任意一點,AB=;
(1)如圖1,將△ADE繞點D逆時針旋轉90°得到△DCF,連接EF;
①把圖形補充完整(無需寫畫法); ②求的取值范圍;
(2)如圖2,求BE+AE+DE的最小值.
【答案】(1)①補圖見解析;②;(2)
【解析】
(1)①根據要求畫出圖形即可;
②首先證明∠ECF=90°,設AE=CF=x,EF2=y,則EC=4x,在Rt△ECF中,利用勾股定理即可解決問題;
(2)如圖2中,將△ABE繞點A順時針旋轉60°得到△AFG,連接EG,DF.作FH⊥AD于H.根據兩點之間線段最短可得DF≤FG+EG+DE,BE=FG,推出AE+BE+DE的最小值為線段DF的長;
(1)①如圖△DCF即為所求;
②∵四邊形ABCD是正方形,
∴BC=AB=2,∠B=90°,∠DAE=∠ADC=45°,
∴AC==
AB=4,
∵△ADE繞點D逆時針旋轉90°得到△DCF,
∴∠DCF=∠DAE=45°,AE=CF,
∴∠ECF=∠ACD+∠DCF=90°,
設AE=CF=x,EF2=y,則EC=4x,
∴y=(4x)2+x2=2x28x+160(0<x≤4).
即y=2(x2)2+8,
∵2>0,
∴x=2時,y有最小值,最小值為8,
當x=4時,y最大值=16,
∴8≤EF2≤16.
(2)如圖中,將△ABE繞點A順時針旋轉60°得到△AFG,連接EG,DF.作FH⊥AD于H.
由旋轉的性質可知,△AEG是等邊三角形,
∴AE=EG,
∵DF≤FG+EG+DE,BE=FG,
∴AE+BE+DE的最小值為線段DF的長.
在Rt△AFH中,∠FAH=30°,AB==AF,
∴FH=AF=
,AH=
=
,
在Rt△DFH中,DF==
,
∴BE+AE+ED的最小值為.
科目:初中數學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=50°,則∠BDE= °.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根x1,x2,請用配方法探索有實數根的條件,并推導出求根公式,證明x1x2=.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形的邊長為
,點
與原點重合點
在
軸的正半軸上,點
在
軸的負半軸上,將正方形ABCD繞點A逆時針旋轉30°至正方形AB′C′D′的位置,B′C′與CD相交于點M,則點M的坐標為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】實踐操作
如圖,是直角三角形,
,利用直尺和圓規按下列要求作圖,并在圖中表明相應的字母.(保留作圖痕跡,不寫作法)
(1)①作的平分線,交
于點
;②以
為圓心,
為半徑作圓.
綜合運用
在你所作的圖中,
(2)與⊙
的位置關系是 ;(直接寫出答案)
(3)若,
,求⊙
的半徑.
(4)在(3)的條件下,求以為軸把△ABC旋轉一周得到的圓錐的側面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為研究學生的課余愛好情況,采取抽樣調查的方法,從閱讀、運動、娛樂、上網等四個方面調查了若干學生的興趣愛好;并將調查的結果繪制成如下兩幅不完整的統計圖,請你根據圖中提供的信息解答下列問題:
(1)在這次研究中,一共調查了 名學生;
(2)補全條形統計圖,并計算閱讀部分圓心角是 度.
(3)若該校九年級愛好閱讀的學生有150人,估計九年級有 名學生?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,BD是一條對角線,點E在直線CD上(與點C,D不重合),連接AE,平移△ADE,使點D移動到點C,得到△BCF,過點F作FG⊥BD于點G,連接AG,EG.
(1)問題猜想:如圖1,若點E在線段CD上,試猜想AG與EG的數量關系是____________,位置關系是____________;
(2)類比探究:如圖2,若點E在線段CD的延長線上,其余條件不變,小明猜想(1)中的結論仍然成立,請你給出證明;
(3)解決問題:若點E在線段DC的延長線上,且∠AGF=120°,正方形ABCD的邊長為2,請在備用圖中畫出圖形,并直接寫出DE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程mx2+(3m+1)x+3=0.
(1)求證:該方程有兩個實數根;
(2)如果拋物線y=mx2+(3m+1)x+3與x軸交于A、B兩個整數點(點A在點B左側),且m為正整數,求此拋物線的表達式;
(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3與y軸交于點C,點B關于y軸的對稱點為D,設此拋物線在﹣3≤x≤﹣之間的部分為圖象G,如果圖象G向右平移n(n>0)個單位長度后與直線CD有公共點,求n的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com