【題目】如圖,在中,點O是AC邊上的一個動點,過點O作直線
,設MN交
的角平分線于點E,交
的外角平分線于點F.
求證:
;
當點O運動到何處時,四邊形AECF是矩形?請說明理由;
在
的條件下,給
再添加一個條件,使四邊形AECF是正方形,那么添加的條件是______.
【答案】(1)見解析;(2)當點O運動到AC的中點時,四邊形AECF是矩形.理由見解析;(3)∠ACB為直角的直角三角形時.
【解析】
(1)由平行線的性質和角平分線的定義得出∠OCE=∠OEC,∠OCF=∠OFC,得出EO=CO,FO=CO,即可得出結論;
(2)先證明四邊形AECF是平行四邊形,再由對角線相等,即可得出結論;
(3)由正方形的性質得出∠ACE=45°,得出∠ACB=2∠ACE=90°即可.
解:(1)
∵MN∥BC,
∴∠3=∠2,
又∵CF平分∠GCO,
∴∠1=∠2,
∴∠1=∠3,
∴FO=CO,
同理:EO=CO,
∴EO=FO.
(2)當點O運動到AC的中點時,四邊形AECF是矩形.
∵當點O運動到AC的中點時,AO=CO,
又∵EO=FO,
∴四邊形AECF是平行四邊形,
由(1)可知,FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四邊形AECF是矩形.
(3)當點O運動到AC的中點時,且△ABC滿足∠ACB為直角的直角三角形時,四邊形AECF是正方形.
∵由(2)知,當點O運動到AC的中點時,四邊形AECF是矩形,
∵MN∥BC,
∴∠AOE=∠ACB
∵∠ACB=90°,
∴∠AOE=90°,
∴AC⊥EF,
∴四邊形AECF是正方形.
故答案為:∠ACB為直角的直角三角形時.
科目:初中數學 來源: 題型:
【題目】(1)問題發現
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.
填空:
①∠AEB的度數為 ;
②線段AD,BE之間的數量關系為 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數及線段CM,AE,BE之間的數量關系,并說明理由.
(3)解決問題
如圖3,在正方形ABCD中,CD=3,若點P滿足PD=1,且∠BPD=90°,請直接寫出點A到BP的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某竹制品加工廠根據市場調研結果,對該廠生產的一種新型竹制品玩具未來兩年的銷售進行預測,并建立如下模型:設第t個月,竹制品銷售量為P(單位:箱),P與t之間存在如圖所示函數關系,其圖象是線段AB(不含點A)和線段BC的組合.設第t個月銷售每箱的毛利潤為Q(百元),且Q與t滿足如下關系Q=2t+8(0≤t≤24).
(1)求P與t的函數關系式(6≤t≤24).
(2)該廠在第幾個月能夠獲得最大毛利潤?最大毛利潤是多少?
(3)經調查發現,當月毛利潤不低于40000且不高于43200元時,該月產品原材料供給和市場售最和諧,此時稱這個月為“和諧月”,那么,在未來兩年中第幾個月為和諧月?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOB=90°,點A繞點O順時針旋轉后的對應點A1落在射線OB上,點A繞點A1順時針旋轉后的對應點A2落在射線OB上,點A繞點A2順時針旋轉后的對應點A3落在射線OB上,…,連接AA1,AA2,AA3…,依此作法,則∠AA2A3=___,∠AAnAn+1等于___度.(用含n的代數式表示,n為正整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足連接CE并延長交AD于點F,連接AE,過B點作
于點G,延長BG交AD于點
在下列結論中:
;
;
,其中正確的結論有
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:①4a+b=0;②9a+c>3b;③ 8a+7b+2c>0;④若點A(﹣3,y1)、點B( ,y2)、點C(
,y3)在該函數圖象上,則y1<y3<y2;⑤若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有_______個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知O(0,0),A(﹣3,4),B(3,4),將△OAB與正方形ABCD組成的圖形繞點O順時針旋轉,每次旋轉90°,測第70次旋轉結束時,點D的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE∥BA交AC于點E,DF∥CA交AB于點F,已知CD=3.
(1)求AD的長;
(2)求四邊形AEDF的周長.(注意:本題中的計算過程和結果均保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,拋物線與
軸交于點A和點C(2,0),與
軸交于點D,將△DOC繞點O逆時針旋轉90°后,點D恰好與點A重合,點C與點B重合.
(1)直接寫出點A和點B的坐標;
(2)求和
的值;
(3)已知點E是該拋物線的頂點,求證:AB⊥EB.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com