【題目】如圖,在矩形ABCD中,AB:BC=3:5,點E是對角線BD上一動點(不與點B,D重合),將矩形沿過點E的直線MN折疊,使得點A,B的對應點G,F分別在直線AD與BC上,當△DEF為直角三角形時,CN:BN的值為______.
【答案】或
【解析】
因為點A,B的對應點G,F分別在直線AD與BC上,所以分兩種情況討論, 當∠EFD=90°時,證明△EFN∽△FDC,設CD=5a,根據比例式表示出CN,BN即可;當∠EDF=90°時,證明△FCD∽△DCB,設CD=3a, 根據比例式表示出CN,BN即可.
解:分兩種情況:
當∠EFD=90°時,如下圖,
∵∠EFN=∠C=90°,易證∠EFN=∠FDC,
∴△EFN∽△FDC,
設CD=5a,由題可知,CF=3a,
∴,∴BC=
,
∴BN=NF=,即
當∠EDF=90°時,如下圖,
同理易證:△FCD∽△DCB,
設CD=3a,則BC=5a,CF=
∴BF=5a+,
∴BN=,NC=
,
∴
綜上, CN:BN的值為或
.
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點為D,直線l過C交x軸于E(4,0).
(1)寫出D的坐標和直線l的解析式;
(2)P(x,y)是線段BD上的動點(不與B,D重合),PF⊥x軸于F,設四邊形OFPC的面積為S,求S與x之間的函數關系式,并求S的最大值;
(3)點Q在x軸的正半軸上運動,過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉,M的對應點為M′.在圖2中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小紅同學用儀器測量一棵大樹AB的高度,在C處測得∠ADG=30°,在E處測得∠AFG=60°,CE=8米,儀器高度CD=1.5米,求這棵樹AB的高度(結果保留兩位有效數字,≈1.732).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)B點坐標為 ,并求拋物線的解析式;
(2)求線段PC長的最大值;
(3)若△PAC為直角三角形,直接寫出此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)如圖,在矩形紙片ABCD中,AB=4,AD=12,將矩形紙片折疊,使點C落在AD邊上的點M處,折痕為PE,此時PD=3.
(1)求MP的值;
(2)在AB邊上有一個動點F,且不與點A,B重合.當AF等于多少時,△MEF的周長最?
(3)若點G,Q是AB邊上的兩個動點,且不與點A,B重合,GQ=2.當四邊形MEQG的周長最小時,求最小周長值.(計算結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對任意一個四位數n,如果千位與十位上的數字之和為9,百位與個位上的數字之和也為9,則稱n為“極數”,記為n= 其中
,且x、y為整數
請任意寫出兩個“極數”;
猜想任意一個“極數”是否是99的倍數,請說明理由;
如果一個正整數a是另一個正整數b的平方,則稱正整數a是完全平方數,若四位數m為“極數”,記
寫出三個滿足
是完全平方數的
只需直接寫出結果
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點D,連接OD,AB=,∠CBO=45°,在直線BE上求點M,使△BMC與△ODC相似,則點M的坐標是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列方程,①3x2+x=20,②2x2-3xy+4=0,③,④x2=0,⑤x2-3x-4=0.是一元二次方程的是( 。
A. ①②B. ①②④⑤C. ①③④D. ①④⑤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com