【題目】如圖(1),在中,
,
,點
分別是
的中點,過點
作直線
的垂線段
垂足為
.點
是直線
上一動點,作
使
,
連接
.
(1)觀察猜想:如圖(2),當點與點
重合時,則
的值為 .
(2)問題探究:如圖(1),當點與點
不重合時,請求出
的值及兩直線
夾角銳角的度數,并說明理由
(3)問題解決:如圖(3),當點在同一直線上時,請直接寫出
的值.
【答案】(1)2;(2)60°,見解析;(3)4+或4-
【解析】
(1)由題意可知結論為當點F與點D重合時,則的值為2,并根據題意設BM=a,求出DM,GD即可解決問題;
(2)由題意可知結論為的值為2,兩直線GD、ED夾角銳角的度數為60°,并利用全等三角形的判定定理證明△BGD∽△BFM,可得結論;
(3)根據題意分兩種情形:當點G在線段AF上時以及當點G在線段AF的延長線上時,分別進行求解即可.
解:(1) 設BM=a.
∵AE=EC,AD=DB,
∴DE∥BC,
∴∠BDM=∠ABC=30°,
∵BM⊥EM,
∴∠BMD=90°,
∴,
在Rt△GDB中,∵∠GDB=90°,∠G=30°,
∴,
∴.
故答案為:2.
(2)在Rt△BDM中,設BM=a,則BD=2a,DM=a
在Rt△BGF中,設BF=b,則BG=2b,FG=
在△BGD與△BFM中,
∵BG:BF=2b:b=2a:a=BF:BM,∠DBG=60°-∠FBD=∠FBM
∴△BGD∽△BFM
則DG:FM=BD:BM=2a:a=2:1
即的值為2.
如圖,延長GD、BF交于點P,
∵△BGD∽△BFM
∴∠PFD=∠MFB=∠BGD
則在△PDF與△PBG中,∠PDF=∠PBG=60°.
故的值為2,兩直線GD、ED夾角銳角的度數為60°.
(3)如圖,有以下兩種如圖3①,圖3②
如圖3③,ED是△ABC的中垂線;
∵在Rt△AF1B和Rt△AF2B中,DA=DF1=DF2=DB
∴四邊形AF2BF1是矩形
當點G在線段AF上時,在Rt△BF1G1中,
設BF1=x,則BG1=2x=AG1,F1G1=
∴BG1:AF1=:
=4-
當點G在線段AF的延長線上時,在矩形AF2BF1中,
設AF2=BF1=x, F2B=AF1=
∴BG2=2
則BG2:AF2=2:x=4+
.
∴的值為4+
或4-
.
科目:初中數學 來源: 題型:
【題目】如圖,在RtΔABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.
(1)求證:AE=BF;
(2)連接EF,求證:∠FEB=∠GDA;
(3)連接GF,若AE=2,EB=4,求ΔGFD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】世界衛生組織通報說,沙特阿拉伯報告新增5例中東呼吸系統綜合征冠狀病毒(新型冠狀病毒)確診病例.全球新型冠狀病毒確診病例已達176例,其中死亡74例.冠狀病毒顆粒的直徑60-200nm,平均直徑為100nm,新型冠狀病毒直徑為178nm,呈球形或橢圓形,具有多形性.如果1nm=10-9米,那么新型冠狀病毒的半徑約為( )米
A.1.00×10-7B.1.78×10-7C.8.90×10-8D.5.00×10-8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:在教學課上,老師提出如下問題:尺規作圖:作一條線段的垂直平分線.
已知:線段AB.
求作:線段AB的垂直平分線.
小蕓的作法如下:如圖, (1)分別以點A和點B為圓心,大于的長為半徑作弧,兩孤相交于C,D兩點; (2)作直線CD.所以直線CD就是所求作的垂直平分線.
老師說:“小蕓的作法正確.”
請回答:小蕓的作圖依據是____________________,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年全國兩會于3月5日在人民大會堂開幕,某社區為了解居民對此次兩會的關注程度,在全社區范圍內隨機抽取部分居民進行問卷調查,根據調查結果,把居民對兩會的關注程度分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下不完整的統計圖:
請結合圖表中的信息,解答下列問題:
(1)此次調查一共隨機抽取了_____名居民;
(2)請將條形統計圖補充完整;
(3)扇形統計圖中,“很強”所對應扇形圓心角的度數為_____;
(4)若該社區有1500人,則可以估計該社區居民對兩會的關注程度為“淡薄”層次的約有 _____人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在△ABC中,CE、CF分別平分∠ACB與它的鄰補角∠ACD,AE⊥CE于E,AF⊥CF于F,直線EF分別交AB、AC于M、N.
(1)求證:四邊形AECF為矩形;
(2)試猜想MN與BC的關系,并證明你的猜想;
(3)如果四邊形AECF是菱形,試判斷△ABC的形狀,直接寫出結果,不用說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是半徑為1的圓O直徑,C是圓上一點,D是BC延長線上一點,過點D的直線交AC于E點,且△AEF為等邊三角形.
(1)求證:△DFB是等腰三角形;
(2)若DA=AF,求證:CF⊥AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與
軸交于點
,與
軸交于點
,拋物線
經過點
和點
,與
軸交于另一點
.
(1)求拋物線表達式;
(2)在第二象限的拋物線上有一點,且點
到線段
的距離為
,求點
的坐標;
(3)矩形的邊
在
軸的正半軸,
在第一象限,
,
,將矩形
沿
軸負方向平移
,直線
、
分別交拋物線于
、
.問:是否存在實數
,使得以點
、
、
、
為頂點的四邊形是平行四邊形?若存在,請直接寫出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com