【題目】如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上.
(1)將△ABC向下平移5個單位再向右平移1個單位后得到對應的△A1B1C1,畫出△A1B1C1;
(2)畫出△A1B1C1關于y軸對稱的△A2B2C2;
(3)P(a,b)是△ABC的邊AC上一點,請直接寫出經過兩次變換后在△A2B2C2中對應的點P2的坐標.
科目:初中數學 來源: 題型:
【題目】某同學模仿二維碼的方式為學校設計了一個身份識別圖案系統:在的正方形網格中,黑色正方形表示數字1,白色正方形表示數字0.如圖1是某個學生的身份識別圖案.約定如下:把第i行,第j列表示的數字記為
(其中i,j=1,2,3,4),如圖1中第2行第1列的數字
=0;對第i行使用公式
進行計算,所得結果
表示所在年級,
表示所在班級,
表示學號的十位數字,
表示學號的個位數字.如圖1中,第二行
,說明這個學生在5班.
(1)圖1代表的學生所在年級是______年級,他的學號是_________;
(2)請仿照圖1,在圖2中畫出八年級4班學號是36的同學的身份識別圖案
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形中,點E在邊
上,將點E繞點D逆時針旋轉得到點F,若點F恰好落在邊
的延長線上,連接
,
,
.
(1)判斷的形狀,并說明理由;
(2)若,則
的面積為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點A(0,1)和點B(3,﹣2),交x軸于點C,頂點為點F,點D是該拋物線上一點.
(1)求拋物線的函數表達式;
(2)如圖1,若點D在直線AB上方的拋物線上,求△DAB的面積最大時點D的坐標;
(3)如圖2,若點D在對稱軸左側的拋物線上,且點E(1,t)是射線CF上一點,當以C、B、D為頂點的三角形與△CAE相似時,求所有滿足條件的t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=-x2+(n-1)x+3的圖像與y軸交于點A,與x軸的負半軸交于點B(-2,0)
(1)求二次函數的解析式;
(2)點P是這個二次函數圖像在第二象限內的一線,過點P作y軸的垂線與線段AB交于點C,求線段PC長度的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,為
的對稱中心,
,
軸交
軸于點
,點
的坐標點為
,反比例函數
的圖像經過點
.將
沿
軸向上平移,使點
的對應點
落在反比例函數的圖像上,則平移過程中線段
掃過的面積為( )
A.6B.8C.24D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,
,
,
.動點
分別從點
同時出發,點
以每秒1個單位的速度沿
勻速運動.點
沿折線
向終點
勻速運動,在
上的速度分別是每秒
個單位、每秒2個單位.當點
停止時,點
也隨之停止運動.連按
,將
繞著點
逆時針旋轉
得到
,連按
,設點
的運動時間為
.
(1)用含的代數式表示
的長.
(2)當點與
的頂點重合時,求
的長.
(3)設的面積為
,求
與
之間的函數關系式.
(4)點出發后,當
與
的邊所夾的角被
平分時,直按寫出
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年4月18日,臺灣省花蓮善線發生里氏級地震,救援隊救援時,利用生命探測儀在某建筑物廢墟下方探測到點
處有生命跡象,已知廢墟一側地面上兩探測點
相距6米,探測線與地面的夾角分別為
和
,如圖所示,試確定生命所在點
的深度(結果精確到
米,參考數據
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是菱形,BC∥x軸,點B的坐標是(1,),坐標原點O是AB的中點.動圓⊙P的半徑是
,圓心在x軸上移動,若⊙P在運動過程中只與菱形ABCD的一邊相切,則點P的橫坐標m 的取值范圍是_________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com