精英家教網 > 初中數學 > 題目詳情

【題目】在“宏揚傳統文化,打造書香校園”活動中,學校計劃開展四項活動:“A﹣國學誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意愿,隨機調查了部分學生,結果統計如下:
(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調查的總人數為人,扇形統計圖中,希望參加活動D所占圓心角為度,根據題中信息補全條形統計圖.
(2)學,F有800名學生,請根據圖中信息,估算全校學生希望參加活動A有多少人?

【答案】
(1)60;72
(2)解:由題意可得,

800× =360,

答:全校學生希望參加活動A有360人


【解析】解:(1)由題意可得, 被調查的總人數是:12÷20%=60,希望參加活動B的人數為:60×15%=9,希望參加活動D的人數為:60﹣27﹣9﹣12=12,
扇形統計圖中,希望參加活動D所占圓心角為:360°×(1﹣ ﹣15%﹣20%)=360°×20%=72°,
所以答案是:60,72,
補全的條形統計圖圖右圖所示;

【考點精析】利用扇形統計圖和條形統計圖對題目進行判斷即可得到答案,需要熟知能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數目以及事物的變化情況;能清楚地表示出每個項目的具體數目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為了了解某校學生對籃球、足球、羽毛球、乒乓球、網球等五類的喜愛,小李采用了抽樣調查,在繪制扇形圖時,由于時間倉促,還有足球、網球等信息還沒有繪制完成,如圖所示,根據圖中的信息,這批被抽樣調查的學生最喜歡足球的人數不可能是( 。

A.100人
B.200人
C.260人
D.400人

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD中,E是AD的中點,連接CE并延長,與BA的延長線交于點F. 請你找出圖中與AF相等的一條線段,并加以證明.(不再添加其它線段,不再標注或使用其它字母)
(1)結論:AF=
(2)證明結論。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調查,根據調查結果繪制了如下尚不完整的統計圖.
根據以上信息解答下列問題:
(1)這次抽樣調查的樣本容量是;
(2)通過“電視”了解新聞的人數占被調查人數的百分比為;扇形統計圖中,“手機上網”所對應的圓心角的度數是
(3)請補全條形統計圖;
(4)若該市約有70萬人,請你估計其中將“電腦和手機上網”作為“獲取新聞的最主要途徑”的總人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直線旋轉一周得到一個幾何體,則這個幾何體的側面積為(
A.60πcm2
B.65πcm2
C.120πcm2
D.130πcm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E、G分別是邊AD、BC的中點,AF= AB.

(1)求證:EF⊥AG;
(2)若點F、G分別在射線AB、BC上同時向右、向上運動,點G運動速度是點F運動速度的2倍,EF⊥AG是否成立(只寫結果,不需說明理由)?
(3)正方形ABCD的邊長為4,P是正方形ABCD內一點,當SPAB=SOAB , 求△PAB周長的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=6,則扇形(圖中陰影部分)的面積是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y= x+2與x軸交于點A,與y軸交于點C,拋物線y= x2+bx+c經過A、C兩點,與x軸的另一交點為點B.

(1)求拋物線的函數表達式;
(2)點D為直線AC上方拋物線上一動點;
①連接BC、CD,設直線BD交線段AC于點E,△CDE的面積為S1 , △BCE的面積為S2 , 求 的最大值;
②過點D作DF⊥AC,垂足為點F,連接CD,是否存在點D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點D的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,∠DAC=65°,點E是CD上一點,BE交AC于點F,將△BCE沿BE折疊,點C恰好落在AB邊上的點C′處,則∠AFC′=

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视