精英家教網 > 初中數學 > 題目詳情

【題目】如圖,拋物線y軸的交點為A,拋物線的頂點為

1)求出拋物線的解析式;

2)點Px軸上一點,當PAB的周長最小時,求出點P的坐標.

【答案】(1)y=;(2)

【解析】

(1)已知A,B的坐標,運用待定系數法即可解答;

2)先找A0,-2)關于x軸的對稱點為0,2),連接Bx軸于點P,則此時PAB的周長最;然后再求出P所在直線的解析式,然后令y=0,即可完成解答.

解:(1)∵ 拋物線與y軸交于點A0,-2),頂點為B1,-3

可設拋物線解析式,代入點A0,-2)得a =1

∴拋物線解析式

2)設點A0,-2)關于x軸的對稱點為02),連接Bx軸于點P,則此時PAB的周長最小

設直線B的解析式,代入點0,2),B1,-3)得:

解得:k=-5,b2

直線B的解析式

y0時,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在等邊△ABC中,點D AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉60°后得到CE,連接AE.求證:AE∥BC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2+bx4a經過A(﹣10)、C0,4)兩點,與x軸交于另一點B,

1)求拋物線的解析式;

2)已知點Dmm+1)在第一象限的拋物線上,求點D的坐標.

3)設直線BCymx+nk0),若mx+nax2+bx4a,結合函數圖象,寫出x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有兩個一元二次方程:M:N:,其中,以下列四個結論中,錯誤的是( )

A、如果方程M有兩個不相等的實數根,那么方程N也有兩個不相等的實數根;

B、如果方程M有兩根符號相同,那么方程N的兩根符號也相同;

C、如果5是方程M的一個根,那么是方程N的一個根;

D、如果方程M和方程N有一個相同的根,那么這個根必是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數yax2+bx+ca≠0)的圖象如圖所示,其對稱軸為直線x=﹣1,與x軸的交點為(x1,0)、(x2,0),其中0x11,有下列結論:①abc0;②﹣3x2<﹣2;③4a2b+c<﹣1;④當m為任意實數時,abam2+bm;⑤若點(﹣0.5y1),(﹣2,y2)均在拋物線上,則y1y2;⑥a.其中,正確結論的個數為( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數yaxh2+ka0)的圖象是拋物線,定義一種變換,先作這條拋物線關于原點對稱的拋物線y′,再將得到的對稱拋物線y′向上平移mm0)個單位,得到新的拋物線ym,我們稱ym叫做二次函數yaxh2+ka0)的m階變換.

1)已知:二次函數y2x+22+1,它的頂點關于原點的對稱點為   ,這個拋物線的2階變換的表達式為   

2)若二次函數M6階變換的關系式為y6′=(x12+5

二次函數M的函數表達式為   

若二次函數M的頂點為點A,與x軸相交的兩個交點中左側交點為點B,在拋物線y6′=(x12+5上是否存在點P,使點P與直線AB的距離最短,若存在,求出此時點P的坐標.

3)拋物線y=﹣3x26x+1的頂點為點A,與y軸交于點B,該拋物線的m階變換的頂點為點C.若△ABC是以AB為腰的等腰三角形,請直按寫出m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結論:b24acabc>0;2a﹣b=0;8a+c<0;9a+3b+c<0,其中結論正確的是   .(填正確結論的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:在平面直角坐標系中,圖形G上點P(x,y)的縱坐標y與其橫坐標x的差yx稱為P點的“坐標差”,而圖形G上所有點的“坐標差”中的最大值稱為圖形G的“特征值”

(1)①點A(1,3) 的“坐標差”為 。

②拋物線y=x2+3x+3的“特征值”為 。

(2)某二次函數y=x2+bx+c(c≠0) 的“特征值”為1,點B(m,0)與點C分別是此二次函數的圖象與x軸和y軸的交點,且點B與點C的“坐標差”相等。

①直接寫出m= (用含c的式子表示)

②求此二次函數的表達式。

(3)如圖,在平面直角坐標系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點D、E請直接寫出⊙M的“特征值”為 。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O內有折線OABC,點B、C在圓上,點A在⊙O內,其中OA=4cm,BC=10cm,∠A=B=60°,則AB的長為_______.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视