【題目】為了解某小區居民使用共享單車次數的情況,某研究小組隨機采訪該小區的10位居民,得到這10位居民一周內使用共享單車的次數統計如下:
使用次數 | 0 | 5 | 10 | 15 | 20 |
人數 | 1 | 1 | 4 | 3 | 1 |
(1)這10位居民一周內使用共享單車次數的中位數是 次,眾數是 次,平均數是 次.
(2)若小明同學把數據“20”看成了“30”,那么中位數,眾數和平均數中不受影響的是 .(填“中位數”,“眾數”或“平均數”)
(3)若該小區有200名居民,試估計該小區居民一周內使用共享單車的總次數.
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在Rt△ABC 中, ,D、E是斜邊BC上兩動點,且∠DAE=45°,將△
繞點
逆時針旋轉90后,得到△
,連接
.
(1)試說明:△≌△
;
(2)當BE=3,CE=9時,求∠BCF的度數和DE的長;
(3)如圖2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜邊BC所在直線上一點,BD=3,BC=8,求DE2的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環境,某開發區綜合治理指揮部決定購買A、B兩種型號的污水處理設備共10臺(注:要求同時有兩種型號),買2臺A型設備和3臺B型設備共需要90萬元,其中A型設備單價是B型設備單價的1.5倍;經預算,指揮部購買污水處理設備經費不超過180萬元,請解答下列問題
(1)A型設備和B型設備的單價各是多少萬元?
(2)指揮部有哪幾種購買方案?
(3)若A型設備月處理污水量200噸、B型設各月處理污水量180噸,現要求月處理污水量不低于1840噸,設購買設備需要總費用為y萬元,A型設備x臺,請寫出y與x的函數解析式,并根據函數性質選擇更省錢的購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了預測本校九年級男生畢業體育測試達標情況,隨機抽取該年級部分男生進行一次測試(滿分50分,成績均記為整數分),并按測試成績m(單位:分)分類:A類(45<m≤50),B類(40<m≤45),C類(35<m≤40),D類(m≤35)繪制出如圖所示的不完整條形統計圖,請根據圖中信息解答下列問題:
(1)a= ,b= ,c= ;
成績等級 | 人數 | 所占百分比 |
A類(45 | 10 | 20% |
B類 | 22 | 44% |
C類 | a | b |
D類 | c |
(2)補全條形統計圖;
(3)若該校九年級男生有600名,D類為測試成績不達標,請估計該校九年級男生畢業體育測試成績能達標的有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知ABCD,點E是BC邊上的一點,將邊AD延長至點F,使∠AFC=∠DEC.
(1)求證:四邊形DECF是平行四邊形;
(2)若AB=13,DF=14,tan A=,求CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為4的正方形ABCD的一邊BC與直角邊分別是2和4的Rt△GEF的
一邊GF重合.正方形ABCD以每秒1個單位長度的速度沿GE向右勻速運動,當點A和點E重合時正方形停止運
動.設正方形的運動時間為t秒,正方形ABCD與Rt△GEF重疊部分面積為s,則s關于t的函數圖象為
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料,并完成相應的任務.
三等分任意角問題是數學史上一個著名的問題,直到1837年,數學家才證明了“三等分任意角”是不能用尺規完成的.
在探索中,出現了不同的解決問題的方法
方法一:
如圖(1),四邊形ABCD是矩形,F是DA延長線上一點,G是CF上一點,CF與AB交于點E,且∠ACG=∠AGC,∠GAF=∠F,此時∠ECB=∠ACB.
方法二:
數學家帕普斯借助函數給出一種“三等分銳角”的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標系中,邊OB在x軸上,邊OA與函數y=的圖象交于點P,以點P為圓心,以2OP長為半徑作弧交圖象于點R.過點P作x軸的平行線,過點R作y軸的平行線,兩直線相交于點M,連接OM得到∠AOB,過點P作PH⊥x軸于點H,過點R作RQ⊥PH于點Q,則∠MOB=
∠AOB.
(1)在“方法一”中,若∠ACF=40°,GF=4,求BC的長.
(2)完成“方法二”的證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,學校附近有一條筆直的公路l,其間設有區間測速,所有車輛限速40千米/小時.數學實踐活動小組設計了如下活動:在l上確定A,B兩點,并在AB路段進行區間測速在l外取一點P,作PC⊥1,垂足為點C.測得PC=30米,∠APC=71°,∠BPC=35°,測得一汽車從點A到點B用時6秒,請你用所學的數學知識說明該車是否超速?(參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,.將△ABC繞點A逆時針旋轉60°,得到△AB'C'(點B,C的對應點分別為點B′,C′),延長C′B′分別交AC,BC于點D,E,若DE=2,則AD的長為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com