精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:

①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N

②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P

③作AP射線,交邊CD于點Q

QC1BC3,則平行四邊形ABCD周長為_____

【答案】14

【解析】

根據角平分線的性質可知∠DAQ=∠BAQ,再由平行四邊形的性質得出CDAB,BCAD3,∠BAQ=∠DQA,故可得出AQD是等腰三角形,據此可得出DQAD,進而可得出平行四邊形ABCD周長.

解:如圖:

∵由作圖可知,AQ是∠DAB的平分線,

∴∠DAQ=∠BAQ

∵四邊形ABCD是平行四邊形,

CDABBCAD3,∠BAQ=∠DQA,

∴∠DAQ=∠DQA

∴△AQD是等腰三角形,

DQAD3

QC1

CDDQ+CQ3+14,

∴平行四邊形ABCD周長=2DC+AD)=4+3)=14

故答案為:14

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為了掌握八年級數學考試卷的命題質量與難度系數,命題組教師赴外地選取一個水平相當的八年級班級進行預測,將考試成績分布情況進行處理分析,制成如圖表(成績得分均為整數):

根據圖表中提供的信息解答下列問題:

1)頻數分布表中的a= ,b= ;扇形統計圖中的m= ,n= ;

2)已知全區八年級共有200個班(平均每班40人),用這份試卷檢測,108分及以上為優秀,預計優秀的人數約為 人,72分及以上為及格,預計及格的人數約為 人;

3)補充完整頻數分布直方圖.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數y= (x>0)的圖象經過點C,交AB于點D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)連接OC,若BD=BC,求OC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB5,BC4,以CD為直徑作⊙O.將矩形ABCD繞點C旋轉,使所得矩形ABCD的邊AB與⊙O相切,切點為E,邊CD與⊙O相交于點F,則CF的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A在雙曲線yk≠0)的第一象限的分支上,AB垂直y軸于點B,點Cx軸正半軸上,OC2AB,點E在線段AC上,且AE3EC,點DOB的中點,連接CD,若CDE的面積為1,則k的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB4cm,AD8cm,按如圖方式折疊,使點D與點B重合,折痕為EF,則tanBEF=(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數yax+b的圖象與反比例函數y的圖象交于C,D兩點,與x,y軸交于BA兩點,CEx軸于點E,且tanABO,OB4OE1

1)求一次函數的解析式和反比例函數的解析式

2)求△OCD的面積;

3)根據圖象直接寫出一次函數的值大于反比例函數的值時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3cm,AD4cm,EF經過對角線BD的中點O,分別交AD,BC于點EF

1)求證:△BOF≌△DOE;

2)當EFBD時,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】綜合與實踐:

概念理解:將△ABC 繞點 A 按逆時針方向旋轉,旋轉角記為 θ0°≤θ90°),并使各邊長變為原來的 n 倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],

問題解決:(2)如圖,在△ABC 中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θn]得到△AB′C′,使點 B,CC′在同一直線上,且四邊形 ABBC′為矩形,求 θ n 的值.

拓廣探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,對△ABC作變換 得到△AB′C′,則四邊形 ABB′C′為正方形

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视