【題目】下面給出四種說法: ①用相關指數R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設隨機變量X服從正態分布N(0,1),若P(x>1)=p,則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( ,
).
其中正確的說法有(請將你認為正確的說法的序號全部填寫在橫線上)
【答案】②③④
【解析】解:對于①,用相關指數R2來刻畫回歸效果時, R2越大,說明模型的擬合效果越好,∴①錯誤;
對于②,命題P:“x0∈R,x02﹣x0﹣1>0”的否定是
¬P:“x∈R,x2﹣x﹣1≤0”,②正確;
對于③,根據正態分布N(0,1)的性質可得,
若P(X>1)=p,則P(X<﹣1)=p,
∴P(﹣1<X<1)=1﹣2p,
∴P(﹣1<X<0)= ﹣p,③正確;
對于④,回歸直線一定過樣本點的中心( ,
),正確;
綜上,正確的說法是②③④.
所以答案是:②③④.
【考點精析】本題主要考查了相關系數的相關知識點,需要掌握|r|≤1,且|r|越接近于1,相關程度越大;|r|越接近于0,相關程度越小才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數段的人數(x)與數學成績相應分數段的人數(y)之比如表所示,求數學成績在[50,90)之外的人數.
分數段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,曲線C的參數方程為 (t為參數),以O為極點x軸的正半軸為極軸建極坐標系,直線l的極坐標方程為ρ(cosθ﹣sinθ)=4,且與曲線C相交于A,B兩點. (Ⅰ)在直角坐標系下求曲線C與直線l的普通方程;
(Ⅱ)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠家為了解銷售轎車臺數與廣告宣傳費之間的關系,得到如表統計數據表:根據數據表可得回歸直線方程 ,其中
,
,據此模型預測廣告費用為9萬元時,銷售轎車臺數為( )
廣告費用x(萬元) | 2 | 3 | 4 | 5 | 6 |
銷售轎車y(臺數) | 3 | 4 | 6 | 10 | 12 |
A.17
B.18
C.19
D.20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系xoy中,已知點P(0, ),曲線C的參數方程為
(φ為參數).以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
. (Ⅰ)判斷點P與直線l的位置關系并說明理由;
(Ⅱ)設直線l與曲線C的兩個交點分別為A,B,求 +
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著社會發展,廣州市在一天的上下班時段經常會出現堵車嚴重的現象.交通指數是交通擁堵指數的簡稱,是綜合反映道路網暢通或擁堵的概念.記交通指數為T,其范圍為[0,10],分別有5個級別;T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10)嚴重擁堵.早高峰時段(T≥3),從廣州市交通指揮中心隨機選取了50個交通路段進行調查,依據交通指數數據繪制的直方圖如圖所示:
(1)據此直方圖,估算交通指數T∈[3,9)時的中位數和平均數;
(2)據此直方圖,求市區早高峰馬路之間的3個路段至少有2個嚴重擁堵的概率;
(3)某人上班路上所用時間,若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘;中度擁堵為45分鐘;嚴重擁堵為60分鐘,求此人上班所用時間的數學期望.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a,b,c,且bcosC=(2a﹣c)cosB.
(1)求角B的大;
(2)已知b= ,BD為AC邊上的高,求BD的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com