【題目】在平面直角坐標系xoy中,曲線C的參數方程為 (t為參數),以O為極點x軸的正半軸為極軸建極坐標系,直線l的極坐標方程為ρ(cosθ﹣sinθ)=4,且與曲線C相交于A,B兩點. (Ⅰ)在直角坐標系下求曲線C與直線l的普通方程;
(Ⅱ)求△AOB的面積.
科目:初中數學 來源: 題型:
【題目】如圖1所示,將矩形OABC置于平面直角坐標系中,點A,C分別在x,y軸的正半軸上,已知點B(4,2),將矩形OABC翻折,使得點C的對應點P恰好落在線段OA(包括端點O,A)上,折痕所在直線分別交BC、OA于點D、E;若點P在線段OA上運動時,過點P作OA的垂線交折痕所在直線于點Q.
(1)求證:CQ=QP
(2)設點Q的坐標為(x,y),求y關于x的函數關系式及自變量x的取值范圍;
(3)如圖2,連結OQ,OB,當點P在線段OA上運動時,設三角形OBQ的面積為S,當x取何值時,S取得最小值,并求出最小值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數f(x)=ln(x+1)+ax2 , a>0.
(1)討論函數f(x)的單調性;
(2)若函數f(x)在區間(﹣1,0)有唯一零點x0 , 證明: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙、丙三人投擲飛鏢,他們的成績(環數)如下面的頻數條統計圖所示.則甲、乙、丙三人的訓練成績方差S甲2 , S乙2 , S丙2的大小關系是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設Sn是數列{an}的前n項和,an>0,且4Sn=an(an+2). (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn= ,Tn=b1+b2+…+bn , 求證:Tn<
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知曲線C上任意一點M到點F(0,1)的距離比它到直線l:y=﹣2的距離小1. (Ⅰ)求曲線C的方程;
(Ⅱ)斜率不為0且過點P(2,2)的直線m與曲線C交于A,B兩點,設 =λ
,當△AOB的面積為4
時(O為坐標原點),求λ的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區開設分店.為了確定在該區開設分店的個數,該公司對該市已開設分店的其他區的數據作了初步處理后得到下列表格.記x表示在各區開設分店的個數,y表示這x個分店的年收入之和.
x(個) | 2 | 3 | 4 | 5 | 6 |
y(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)該公司已經過初步判斷,可用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程y= ;
(Ⅱ)假設該公司在A區獲得的總年利潤z(單位:百萬元)與x,y之間的關系為z=y﹣0.05x2﹣1.4,請結合(Ⅰ)中的線性回歸方程,估算該公司應在A區開設多少個分店時,才能使A區平均每個分店的年利潤最大?
參考公式: =
x+a,
=
=
,a=
﹣
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面給出四種說法: ①用相關指數R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設隨機變量X服從正態分布N(0,1),若P(x>1)=p,則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( ,
).
其中正確的說法有(請將你認為正確的說法的序號全部填寫在橫線上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某一公路的道路維修工程,準備從甲、乙兩個工程隊選一個隊單獨完成.根據兩隊每天的工程費用和每天完成的工程量可知,若由兩隊合做此項維修工程,6天可以完成,共需工程費用385200元,若單獨完成此項維修工程,甲隊比乙隊少用5天,每天的工程費用甲隊比乙隊多4000元,從節省資金的角度考慮,應該選擇哪個工程隊?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com