【題目】設Sn是數列{an}的前n項和,an>0,且4Sn=an(an+2). (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn= ,Tn=b1+b2+…+bn , 求證:Tn<
.
【答案】解:(Ⅰ)解∵4Sn=an(an+2),① 當n=1時得 ,即a1=2,
當n≥2時有4Sn﹣1=an﹣1(an﹣1+2)②
由①﹣②得 ,即2(an+an﹣1)=(an+an﹣1)(an﹣an﹣1),
又∵an>0,
∴an﹣an﹣1=2,
∴an=2+2(n﹣1)=2n.
(Ⅱ)證明:∵ =
=
,
∴Tn=b1+b2+…+bn= =
【解析】(I)利用數列遞推關系即可得出.(II)利用裂項求和、數列的單調性即可證明.
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系,以及對數列的通項公式的理解,了解如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.
科目:初中數學 來源: 題型:
【題目】設二次函數y=x2+ax+b圖像與x軸有2個交點,A(x1,0),B(x2,0);且0< x1<1;1< x2<2,那么(1)a的取值范圍是;b的取值范圍是;則(2) 的取值范圍是.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2+bx有兩個極值點x1、x2 , 且x1<x2 , 若x1+2x0=3x2 , 函數g(x)=f(x)﹣f(x0),則g(x)( )
A.恰有一個零點
B.恰有兩個零點
C.恰有三個零點
D.至多兩個零點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將圓 為參數)上的每一點的橫坐標保持不變,縱坐標變為原來的
倍,得到曲線C.
(1)求出C的普通方程;
(2)設直線l:x+2y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系, 求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知兩動圓F1:(x+ )2+y2=r2和F2:(x﹣
)2+y2=(4﹣r)2(0<r<4),把它們的公共點的軌跡記為曲線C,若曲線C與y軸的正半軸的交點為M,且曲線C上的相異兩點A、B滿足:
=0.
(1)求曲線C的方程;
(2)證明直線AB恒經過一定點,并求此定點的坐標;
(3)求△ABM面積S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,曲線C的參數方程為 (t為參數),以O為極點x軸的正半軸為極軸建極坐標系,直線l的極坐標方程為ρ(cosθ﹣sinθ)=4,且與曲線C相交于A,B兩點. (Ⅰ)在直角坐標系下求曲線C與直線l的普通方程;
(Ⅱ)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(Ⅰ)如果關于x的不等式|x+3|+|x﹣2|<a的解集不是空集,求參數a的取值范圍; (Ⅱ)已知正實數a,b,且h=min{a, },求證:0<h≤
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系xoy中,已知點P(0, ),曲線C的參數方程為
(φ為參數).以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
. (Ⅰ)判斷點P與直線l的位置關系并說明理由;
(Ⅱ)設直線l與曲線C的兩個交點分別為A,B,求 +
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】穿越青海境內的蘭新高鐵極大地改善了沿線人民的經濟文化生活,該鐵路沿線甲,乙兩城市相距480km,乘坐高鐵列車比乘坐普通快車能提前4h到達,已知高鐵列車的平均行駛速度比普通列車快160km/h,設普通列車的平均行駛速度為xkm/h,依題意,下面所列方程正確的是( )
A. ﹣
=4
B. =4
C.
=4
D.
=4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com