精英家教網 > 初中數學 > 題目詳情

【題目】已知如圖,以RtABCAC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,作OFABBC于點F,連接EF

1)求證:OFCE;

2)求證:EF是⊙O的切線;

3)若⊙O的半徑為3,∠EAC60°,求CD的長.

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】

(1)由于AC是⊙O的直徑,得出CE⊥AE,根據OF∥AB,得出OF⊥CE,
(2)得到OF所在直線垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到結論.
(3)證出△AOE是等邊三角形,得到∠EOA=60°,再由直角三角形的性質即可得到結果.

(1)如圖,連接CE

的直徑,∴

,

(2)OFCE

OF所在直線垂直平分CE,FC=FE,OE=OC

∴∠FEC=FCE,OEC=OCE

,即

,即,

FE的切線.

(3)如圖,∵⊙O的半徑為3,

AO=CO=EO=3,

,

,

∵在RtOCD中,∠COD=60°,OC=3,,

∵在中,

,,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,等腰RtABO的頂點A,B分別在反比例函數yk0)與y=﹣ 上,且A點的橫坐標為2,則k的值為( 。

A. B. C. 1D. 1+

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】意大利著名數學家斐波那契在研究兔子繁殖問題時,發現有這樣一組數:1,1,2,3,5,8,13,…,其中從第三個數起,每一個數都等于它前面兩個數的和現以這組數中的各個數作為正方形的邊長值構造正方形,再分別依次從左到右取2個、3個、4個、5個…正方形拼成如上長方形,若按此規律繼續作長方形,則序號為的長方形周長是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在中,,于點D,將繞點B順時針旋轉得到

如圖2,當時,求點C、E之間的距離;

在旋轉過程中,當點AE、F三點共線時,求AF的長;

連結AF,記AF的中點為P,請直接寫出線段CP長度的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線l上有兩動點C、D,點A、點B在直線l同側,且A點與B點分別到l的距離為a米和b米(即圖中AA′=a米,BB′=b米),且A′B′=c米,動點CD之間的距離總為S米,使CA的距離與DB的距離之和最小,則AC+BD的最小值為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】尺規作圖要求:、過直線外一點作這條直線的垂線;、作線段的垂直平分線;

、過直線上一點作這條直線的垂線;、作角的平分線.

如圖是按上述要求排亂順序的尺規作圖:

則正確的配對是( 。

A. ﹣Ⅳ,﹣Ⅱ,﹣Ⅰ,﹣Ⅲ B. ﹣Ⅳ,﹣Ⅲ,﹣Ⅱ,﹣Ⅰ

C. ﹣Ⅱ,﹣Ⅳ,﹣Ⅲ,﹣Ⅰ D. ﹣Ⅳ,﹣Ⅰ,﹣Ⅱ,﹣Ⅲ

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為響應荊州市創建全國文明城市號召,某單位不斷美化環境,擬在一塊矩形空地上修建綠色植物園,其中一邊靠墻,可利用的墻長不超過18m,另外三邊由36m長的柵欄圍成.設矩形ABCD空地中,垂直于墻的邊AB=xm,面積為ym2(如圖).

(1)求yx之間的函數關系式,并寫出自變量x的取值范圍;

(2)若矩形空地的面積為160m2,求x的值;

(3)若該單位用8600元購買了甲、乙、丙三種綠色植物共400棵(每種植物的單價和每棵栽種的合理用地面積如下表).問丙種植物最多可以購買多少棵?此時,這批植物可以全部栽種到這塊空地上嗎?請說明理由.

單價(元/棵)

14

16

28

合理用地(m2/棵)

0.4

1

0.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數軸于點,交軸于點,在軸上有一點,連接.

(1)求二次函數的表達式;

(2)若點為拋物線在軸負半軸上方的一個動點,求面積的最大值;

(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,小明家住在30米高的A樓里,小麗家住在B樓里,B樓坐落在A樓的正北面,已知當地冬至中午12時太陽光線與水平面的夾角為30°

1)如果AB兩樓相距16米,那么A樓落在B樓上的影子有多長?

2)如果A樓的影子剛好不落在B樓上,那么兩樓的距離應是多少米?(結果保留根號)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视