精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,二次函數y=﹣x2+bx+c的圖象與x軸交于A(1,0),B(30)兩點,與y軸交于點C,直線l是拋物線的對稱軸,D是拋物線的頂點.

1)求該拋物線的函數表達式;

2)如圖1,連結BD,線段OC上點E關于直線l的對稱點E'恰好在線段BD上,求點E的坐標;

3)如圖2,點P是直線BC上方拋物線上一動點,過點Py軸的平行線分別與BC交于點M,與x軸交于點N.試問:拋物線上是否存在點Q,使得PQNAMN的面積相等,且線段PQ的長度最?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.

【答案】1y=﹣x2+2x+3;(2E(0,2);(3)存在,點Q()(,)

【解析】

1)先根據拋物線的解析式判斷出二次項的系數為﹣1,再根據點A,B坐標的特點按交點式設出化簡即可得出結論;

2)先確定出直線BD的解析式,設出點E的坐標,進而得出點E'的坐標,代入直線BD解析式求解,即可得出結論;

3)設出點P的坐標,表示出點M,N的坐標,再設出點Q到直線PM的距離為h,根據PQNAMN的面積相等,求出h1,進而得出點Q的坐標,再分兩種情況,利用PQ最短,求出m,即可得出結論.

解:(1)∵二次函數y=﹣x2+bx+c的圖象與x軸交于A(﹣1,0),B3,0),

∴拋物線的解析式為y=﹣(x+1)(x3)=﹣x2+2x+3;

2)由(1)知,拋物線的解析式為y=﹣x2+2x+3=﹣(x12+4,

D1,4),

B3,0),

∴直線BD的解析式為y=﹣2x+6,

設點E0a),

∵點E'是點E關于拋物線對稱軸對稱的點,

E'2,a),

∵點E'2a)在直線BD上,

∴﹣2×2+6a,

a2,

E02);

3)由(1)知,拋物線的解析式為y=﹣x2+2x+3

C0,3),

B30),

∴直線BC的解析式為y=﹣x+3,

設點Pm,﹣m2+2m+3),

Mm,﹣m+3),Nm0),

SAMNANMNm+1)(﹣m+3)=﹣m+1)(m3),

設點Q到直線PM的距離為h,

SPQNPNh(﹣m2+2m+3h,

∵△PQNAMN的面積相等,

∴﹣m+1)(m3h=﹣m+1)(m3),

h1

Q的橫坐標為(m+1)或(m1),

Qm+1,﹣m2+4)或(m1,﹣m2+4m),

Qm+1,﹣m2+4)時,PQ2=(m+1m2+[m2+4﹣(﹣m2+2m+3]2=(2m12+1,

m時,PQ2最小,即PQ最小,此時Q,),

Qm1,﹣m2+4m)時,PQ2=(m1m2+[m2+4m﹣(﹣m2+2m+3]2=(2m32+1,

m時,PQ2最小,即PQ最小,此時Q,),

即滿足條件的點Q,)或(,).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】對于一個函數,自變量xa時,函數值y也等于a,我們稱a為這個函數的不動點.如果二次函數yx2+2x+c有兩個相異的不動點x1、x2,且x11x2,則c的取值范圍是( )

A. c<﹣3B. c<﹣2C. cD. c1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BPCQ,連接AQ、DP交于點O,并分別與邊CD、BC交于點F、E,連接AE,下列結論:①AQ⊥DP;②OA2OEOP;③SAODS四邊形OECFBP1時,tan∠OAE,其中正確結論的是_____.(請將正確結論的序號填寫在橫線上)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】自我省深化課程改革以來,某校開設了:A.利用影長求物體高度,B.制作視力表,C.設計遮陽棚,D.制作中心對稱圖形,四類數學實踐活動課.規定每名學生必選且只能選修一類實踐活動課,學校對學生選修實踐活動課的情況進行抽樣調查,將調查結果繪制成如下兩幅不完整的統計圖.

根據圖中信息解決下列問題:

(1)本次共調查名學生,扇形統計圖中B所對應的扇形的圓心角為度;

(2)補全條形統計圖;

(3)選修D類數學實踐活動的學生中有2名女生和2名男生表現出色,現從4人中隨機抽取2人做校報設計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,ACBC2D是邊AC的中點,CEBDE.若F是邊AB上的點,且使AEF為等腰三角形,則AF的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】,.點P是平面內不與點A,C重合的任意一點.連接AP,將線段AP繞點P逆時針旋轉α得到線段DP,連接AD,BD,CP

1)觀察猜想

如圖1,當時,的值是   ,直線BD與直線CP相交所成的較小角的度數是   

2)類比探究

如圖2,當時,請寫出的值及直線BD與直線CP相交所成的小角的度數,并就圖2的情形說明理由.

3)解決問題

時,若點EF分別是CA,CB的中點,點P在直線EF上,請直接寫出點C,P,D在同一直線上時的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某鄉鎮實施產業扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節,已知該蜜柚的成本價為,投人市場銷售時,調査市場行情,發現該蜜柚銷售不會虧本,且每天銷售量 (單位:千克)與銷售單價 (單位: )之間的函數關系如圖

(1)的函數解析式,并寫出的取值范圍;

(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大,最大利潤是多少?

(3)某農戶今年共采摘蜜柚4800千克,該品種蜜柚的保質期為40天,根據(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是小花在一次放風箏活動中某時段的示意圖,她在A處時的風箏線(整個過程中風箏線近似地看作直線)與水平線構成30°角,線段AA1表示小花身高1.5米,當她從點A跑動9米到達點B處時,風箏線與水平線構成45°角,此時風箏到達點E處,風箏的水平移動距離CF10米,這一過程中風箏線的長度保持不變,求風箏原來的高度C1D

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,

①求證:;

②推斷:的值為   ;

2)類比探究:如圖(2),在矩形中,為常數).將矩形沿折疊,使點落在邊上的點處,得到四邊形,于點,連接于點.試探究CP之間的數量關系,并說明理由;

3)拓展應用:在(2)的條件下,連接,當時,若,,求的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视