精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,EBC邊上的點,AE=BC,DF⊥AE,垂足為F,連接DE.

(1)求證:AB=DF;

(2)若AD=10,AB=6,求tanEDF的值.

【答案】(1)詳見解析;(2)

【解析】

(1)由矩形性質得到∠B=∠DFA,AE=BC,AD=BC,證得△AEB≌△DAF;

(2)由(1)可知:DF=AB=6,AE=AD=10. Rt△AFD中,求出AFEF.

(1)證明:在矩形ABCD中,AD=BC,AD∥BC,∠B=90°.

∵AD∥BC,

∠BEA=∠FAD

∵DF⊥AE,

∠DFA=90°

∠B=∠DFA

∵AE=BC,AD=BC,

∴AE=AD

∴△AEB≌△DAF

∴AB=DF

(2)解:由(1)可知:AB=DF=6,AE=AD=10.

Rt△AFD中,∠DFA=90°,

∴AF===8

∴EF=AE-AF=10-8=2

Rt△DFE中,∠DFE=90°

∴tan∠EDF===

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,甲、乙兩個可以自由轉動的均勻的轉盤,甲轉盤被分成3個面積相等的扇形,乙轉盤被分成4個面積相等的扇形,每一個扇形都標有相應的數字,同時轉動兩個轉盤,當轉盤停止后,設甲轉盤中指針所指區域內的數字為m,乙轉盤中指針所指區域內的數字為n(若指針指在邊界線上時,重轉一次,直到指針都指向一個區域為止).

1請你用畫樹狀圖或列表格的方法求出|mn|>1的概率;

2直接寫出點(m,n)落在函數y=- 圖象上的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在梯形中,,,,,為邊上一動點,作,垂足在邊上,以點為圓心,為半徑畫圓,交射線于點.

1)當圓過點時,求圓的半徑;

2)分別聯結,當時,以點為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;

3)將劣弧沿直線翻折交于點,試通過計算說明線段的比值為定值,并求出次定值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,∠DAF300MCD上一點,AM的延長線交BC的延長線于點FBE垂直平分AM,DGAF,MGDE

1)判斷四邊形DEMG的形狀,并說明理由;

2)求證:△ADM≌△FCM

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題:①同位角相等;②如果45°α90°,那么sinαcosα;③若關于x的方程的解是負數,則m的取值范圍為m<﹣4;④相等的圓周角所對的弧相等.其中假命題有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y1=ax+22-3y2=x-32+1交于點A1,3),過點Ax軸的平行線,分別交兩條拋物線于點B,C.則以下結論:①無論x取何值,y2的值總是正數;②a=1;③當x=0時,y2-y1=4;④2AB=3AC;其中正確結論是( 。

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了預測九年級男生排球30對墻墊球的情況,從本校九年級隨機抽取了n名男生進行該項目測試,并繪制出如下的頻數分布直方圖,其中從左到右依次分為七個組(每組含最小值,不含最大值).根據統計圖提供的信息解答下列問題:

1)求n的值.

2)這個樣本數據的中位數落在第幾組?

3)若測試九年級男生排球30對墻墊球個數不低于10個為合格,根據統計結果,估計該校九年級450名男同學成績合格的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線l:y=x+mx軸、y軸分別交于點A和點B(0,﹣1),拋物線y= x2+bx+c經過點B,與直線l的另一個交點為C(4,n).

(1)n的值和拋物線的解析式;

(2)D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求pt的函數關系式以及p的最大值;

(3)將△AOB繞平面內某點M旋轉90°180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為落點,請直接寫出落點的個數和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數與反比例函數的圖象交于A1,4),B4,n)兩點.

1)求反比例函數和一次函數的解析式;

2)直接寫出當x0時,的解集.

3)點Px軸上的一動點,試確定點P并求出它的坐標,使PA+PB最小.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视