精英家教網 > 初中數學 > 題目詳情

【題目】如果一個正整數能表示成兩個連續偶數的平方差,那么稱這個正整數為巧數,如:,,,因此4,12,20這三個數都是巧數”.

14002020這兩個數是“巧數”嗎?為什么?

2)設兩個連續偶數為(其中取正整數),由這兩個連續偶數構造的“巧數”是4的倍數嗎?為什么?

3)求介于50101之間所有“巧數”之和.

【答案】1400不是巧數,2020巧數,理由見解析;(2)是,理由見解析;(3532

【解析】

1)根據巧數的定義進行判斷即可;

2)列出這兩數的平方差,運用平方差公式進行計算,對結果進行分析即可;

3)介于50100之間的所有巧數中,最小的為:142-122=52,最大的為:262-242=100,將它們全部列出不難求出他們的和.

解:(1400不是巧數,2020巧數.原因如下:

因為,故400不是巧數

因為2020=5062-5042,故2020巧數;

2

n為正整數,
2n1一定為正整數,
4(2n1)一定能被4整除,
即由這兩個連續偶數構造的巧數4的倍數;

3)介于50100之間的所有巧數之和,
S=142122+162142+182162+…+262242=262122=532
故答案是:532

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點P(a,b)和點Q(a,b'),給出如下定義:

b'=,則稱點Q為點P的限變點.例如:點(3,﹣2)的限變點的坐標是(3,﹣2),點(﹣1,5)的限變點的坐標是(﹣1,﹣5).

(1)①點(﹣,1)的限變點的坐標是   ;

②在點A(﹣1,2),B(﹣2,﹣1)中有一個點是函數y=圖象上某一個點的限交點,這個點是   

(2)若點P在函數y=﹣x+3的圖象上,當﹣2≤x≤6時,求其限變點Q的縱坐標b'的取值范圍;

(3)若點P在關于x的二次函數y=x2﹣2tx+t2+t的圖象上,其限變點Q的縱坐標b'的取值范圍是b'≥mb'<n,其中m>n.令s=m﹣n,求s關于t的函數解析式及s的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明家在吾悅廣場購買了一間商鋪,準備承包給甲、乙兩家裝修公司進行店面裝修,經調查:甲公司單獨完成該工程的時間是乙公司的2倍,已知甲、乙兩家公司共同完成該工程建設需20天;若甲公司每天所需工作費用為650元,乙公司每天所需工作費用為1200元,若從節約資金的角度考慮,則應選擇哪家公司更合算?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,A、B兩點的坐標分別為A(0,m)、B(n,0),且|mn﹣3|+=0,點PA出發,以每秒1個單位的速度沿射線AO勻速運動,設點P的運動時間為t秒.

(1)OAOB的長;

(2)連接PB,設△POB的面積為S,用t的式子表示S;

(3)過點P作直線AB的垂線,垂足為D,直線PDx軸交于點E,在點P運動的過程中,是否存在這樣的點P,使△EOP≌△AOB?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩車從A城出發沿一條筆直公路勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離(千米)與甲車行駛的時間t(小時)之間的函數關系如圖所示.

(1)A,B兩城相距 千米,乙車比甲車早到 小時;

(2)甲車出發多長時間與乙車相遇?

(3)若兩車相距不超過20千米時可以通過無線電相互通話,則兩車都在行駛過程中可以通過無線電通話的時間有多長?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在等腰中,,點,點分別是軸,軸上兩個動點,直角邊軸于點,斜邊軸于點.

1)如圖①,當等腰運動到使點恰為中點時,連接,求證:;

2)如圖②,當等腰運動到使時,點的橫坐標為,.軸上是否存在點,使為等腰三角形?若存在,請直接寫出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系內,已知點、點,動點從點開始在線段上以每秒個單位長度的速度向點移動,同時動點從點開始在線段上以每秒個單位長度的速度向點移動,設點、移動的時間為秒.

求點的坐標;

為何值時,的面積為個平方單位?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有甲、乙兩個箱子,其中甲箱內有顆球,分別標記號碼,且號碼為不重復的整數,乙箱內沒有球.已知小育從甲箱內拿出顆球放入乙箱后,乙箱內球的號碼的中位數為.若此時甲箱內有顆球的號碼小于,有顆球的號碼大于,若他們的中位數都為,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點邊上,,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视