【題目】如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點B,D,E在同一直線上,連接AD,BD.
(1)請探究AD與BD之間的位置關系并證明你的結論;
(2)若AC=BC=,DC=CE=
,求線段AD的長;
【答案】(1)AD⊥BD,證明見解析;(2)4.
【解析】
(1)由△ABC和△DEC均為等腰直角三角形,得∠ABC=∠DEC=∠CDE=45°,∠ACB=∠DCE=90°,進而證△ACD≌△BCE,即可得到結論;
(2)過點C作CF⊥AD于點F,根據等腰直角三角形的性質和勾股定理,即可求解.
(1)AD⊥BD,理由如下:
∵△ABC和△DEC均為等腰直角三角形,
∴AC=BC,CE=CD,∠ABC=∠DEC=∠CDE=45°,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,
又∵AC=BC,CE=CD,
∴△ACD≌△BCE(SAS)
∴∠ADC=∠BEC=45°,
∴∠ADE=∠ADC+∠CDE=90°,
∴AD⊥BD;
(2)過點C作CF⊥AD于點F,
∵∠ADC=45°,CF⊥AD,CD=,
∴DF=CF=1,
∵AC=BC=,
∴AF==3,
∴AD=AF+DF=4.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中AB=BC=CD=AD,∠BAD=90°,對角線AC、BD相交于點O.
(1)求證:四邊形ABCD是正方形;
(2)若P是對角線BD上任意一點,連接PA,PA繞點P逆時針旋轉90°得到PE,連接AE、BE.
①根據題意畫圖,判斷B、C、E三點是否共線,并說明理由;
②當BD=8,△PBE的面積等于時,求PB的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一對骰子,如果擲兩骰子正面點數和為2、11、12,那么甲贏;如果兩骰子正面的點數和為7,那么乙贏;如果兩骰子正面的點數和為其他數,那么甲、乙都不贏.繼續下去,直到有一個人贏為止.
(1)你認為游戲是否公平?并解釋原因;
(2)如果你認為游戲公平,那么請你設計一個不公平的游戲;如果你認為游戲不公平,那么請你設計一個公平的游戲.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形中,點
是線段
上一動點,
為
的中點,
的延長線交BC于
.
(1)求證: ;
(2)若,
,
從點
出發,以l
的速度向
運動(不與
重合).設點
運動時間為
,請用
表示
的長;并求
為何值時,四邊形
是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.
(1)求證:∠CBE=∠F;
(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量(件
與銷售價
(元/件)之間的函數關系如圖所示.
(1)求與
之間的函數關系式,并寫出自變量
的取值范圍;
(2)求每天的銷售利潤W(元與銷售價
(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校學生步行到郊外春游,一班的學生組成前隊,速度為4km/h,二班的學生組成后隊,速度為6km/h.前隊出發1h后,后隊才出發,同時,后隊派一名聯絡員騎自行車在兩隊之間不間斷的來回進行聯絡,他騎車的速度為akm/h.若不計隊伍的長度,如圖,折線A﹣B﹣C,A﹣D﹣E分別表示后隊、聯絡員在行進過程中,離前隊的路程y(km)與后隊行進時間x(h)之間的部分函數圖象.
(1)聯絡員騎車的速度a= ;
(2)求線段AD對應的函數表達式;
(3)求聯絡員折返后第一次與后隊相遇時的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形;
(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A1,A2,…,An均在直線上,點B1,B2,…,Bn均在雙曲線
上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點An的橫坐標為
(n為正整數).若
,則
__,
__.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com