【題目】下列汽車標志中,是中心對稱圖形的是( 。
A. B.
C.
D.
【答案】C
【解析】
根據中心對稱的概念可作答.在同一平面內,如果把一個圖形繞某一點旋轉180度,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉點,就叫做中心對稱點.
解答:解:A、不是中心對稱圖形,因為找不到任何這樣的一點,使它繞這一點旋轉180度以后,能夠與它本身重合,即不滿足中心對稱圖形的定義.不符合題意;
B、不是中心對稱圖形,因為找不到任何這樣的一點,使它繞這一點旋轉180度以后,能夠與它本身重合,即不滿足中心對稱圖形的定義.不符合題意;
C、是中心對稱圖形,符合題意;
D、不是中心對稱圖形,因為找不到任何這樣的一點,使它繞這一點旋轉180度以后,能夠與它本身重合,即不滿足中心對稱圖形的定義.不符合題意.
故選C.
科目:初中數學 來源: 題型:
【題目】拋物線上部分點的橫坐標
,縱坐標
的對應值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
小聰觀察上表,得出下面結論:①拋物線與x軸的一個交點為(3,0); ②函數的最大值為6;③拋物線的對稱軸是
;④在對稱軸左側,y隨x增大而增大.其中正確有( )
A. ①② B. ①③ C. ①②③ D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展平,再一次折疊紙片,使點A落在EF上的點A′處,并使折痕經過點B,得到折痕BM,若矩形紙片的寬AB=4,則折痕BM的長為( )
A.B.
C.8D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在三角形ABC中,∠ACB=90°,AC=6,BC=8,點D為邊BC的中點,射線DE⊥BC交AB于點E.點P從點D出發,沿射線DE以每秒1個單位長度的速度運動.以PD為斜邊,在射線DE的右側作等腰直角△DPQ.設點P的運動時間為t(秒).
(1)用含t的代數式表示線段EP的長.
(2)求點Q落在邊AC上時t的值.
(3)當點Q在△ABC內部時,設△PDQ和△ABC重疊部分圖形的面積為S(平方單位),求S與t之間的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過、
作x軸的垂線,分別交直線
于C、D兩點
拋物線
經過O、C、D三點.
求拋物線的表達式;
點M為直線OD上的一個動點,過M作x軸的垂線交拋物線于點N,問是否存在這樣的點M,使得以A、C、M、N為頂點的四邊形為平行四邊形?若存在,求此時點M的橫坐標;若不存在,請說明理由;
若
沿CD方向平移
點C在線段CD上,且不與點D重合
,在平移的過程中
與
重疊部分的面積記為S,試求S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對某一個函數給出如下定義:如果存在常數,對于任意的函數值
,都滿足
≤
,那么稱這個函數是有上界函數;在所有滿足條件的
中,其最小值稱為這個函數的上確界.例如,函數
,
≤2,因此是有上界函數,其上確界是2.如果函數
(
≤x≤
,
<
)的上確界是
,且這個函數的最小值不超過2
,則
的取值范圍是( )
A. ≤
B.
C.
≤
D.
≤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如圖1,A,B為直線l同側的兩點,過點A作直線l的對稱點A′,連接A′B交直線于點P,連接AP,則稱點P為點A,B關于直線l的“等角點”.
運用:如圖2,在平面直坐標系xOy中,已知A(2,),B(﹣2,﹣
)兩點
(1)C(4,),D(4,
),E(4,
),哪個點是點A,B關于直線x=4的“等角點”;
(2)若直線l垂直于x軸,點P(m,n)是點A,B關于直線l的“等角點”,其中m>2,∠APB=α,求證:tan.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com