精英家教網 > 初中數學 > 題目詳情

【題目】我國道路交通安全法第四十七條規定“機動車行經人行橫道時,應當減速行駛;遇行人通過人行橫道,應當停車讓行” 如圖:一輛汽車在一個十字路口遇到行人時剎車停下,汽車里的駕駛員看地面的斑馬線前后兩端的視角分別是,如果斑馬線的寬度是米,駕駛員與車頭的距離是米,這時汽車車頭與斑馬線的距離x是多少?

【答案】0.7米

【解析】試題分析:直接利用已知得出∠BAC=∠BCA,則BCAB,再得出BF的長,求出x的值即可.

試題解析:

解:如圖所示:延長AB,

CDAB,

∴∠CAB=30°,∠CBF=60°,

∴∠BCA=60°-30°=30°,即∠BAC=∠BCA,

BCAB=3m,

Rt△BCF中,BC=3m,∠CBF=60°,

BFBC1.5m,

xBFEF=1.5-0.8=0.7(m),

答:這時汽車車頭與斑馬線的距離x0.7m.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】隨著移動互聯網的快速發展,基于互聯網的共享單車應運而生.為了解某小區居民使用共享單車的情況,某研究小組隨機采訪該小區的10位居民,得到這10位居民一周內使用共享單車的次數分別為:17,12,15,2017,0,7,26,17,9

1)這組數據的中位數是   ,眾數是   ;

2)計算這10位居民一周內使用共享單車的平均次數;

3)若該小區有200名居民,試估計該小區居民一周內使用共享單車的總次數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=x﹣3)(x+1)與x軸交于A,B兩點(點A在點B左側),與y軸交于點C,點D為頂點.

1)求點B及點D的坐標.

2)連結BD,CD,拋物線的對稱軸與x軸交于點E

①若線段BD上一點P,使∠DCP=BDE,求點P的坐標.

②若拋物線上一點M,作MNCD,交直線CD于點N,使∠CMN=BDE,求點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知⊙O的半徑為12cm,弦AB=12cm.

(1)求圓心O到弦AB的距離.

(2)若弦AB恰好是△OCD的中位線,以CD中點E為圓點,R為半徑作⊙E,當⊙O和⊙E相切時,求R的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC內接于半圓,AB是直徑,過A作直線MN,若∠MAC=ABC.

(1)求證:MN是半圓的切線;

(2)設D是弧AC的中點,連結BDAC G,過DDEABE,交ACF.求證:FD=FG.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC和△A'B'C'的頂點都在格點上.

1)將△ABC繞點B順時針旋轉90°后得到△A1BC1;

2)若△A'B'C'是由△ABC繞某一點旋轉某一角度得到,則旋轉中心的坐標是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點A、B在數軸上分別表示數a,b.若A、B兩點間的距離記為d,則da,b之間的數量關系是d=|a-b|.

(1)數軸上有理數x與有理數-2所對應兩點之間的距離可以表示為______;

(2)|x+6|可以表示數軸上有理數x與有理數_______所對應的兩點之間的距離;

|x+6|= |x -2|,則x=______;

(3)a=1,b=-2,將數軸折疊,使得A點與﹣7表示的點重合,則B點與數______表示的點P重合;

(4)若數軸上M、N兩點之間的距離為11(MN的左側),且M、N兩點經過(3)中折疊后互相重合,則M、N兩點表示的數分別是:M_____, N_______

(5)在題(3)的條件下,點A為定點,點BP為動點,若移動點B、P點后,能否使相鄰兩點間距離相等?若能,請寫出移動方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在學習完《有理數》后,小奇對運算產生了濃厚的興趣.借助有理數的運算,定義了一種新運算,規則如下:aba×b+2×a

1)求2⊕(﹣1)的值;

2)求﹣3⊕(﹣4)的值;

3)試用學習有理數的經驗和方法來探究這種新運算是否具有交換律?請寫出你的探究過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,RtABC的直角邊AC在x軸上,ACB=90°,AC=1,反比例函數(k0)的圖象經過BC邊的中點D(3,1)

(1)求這個反比例函數的表達式;

(2)若ABC與EFG成中心對稱,且EFG的邊FG在y軸的正半軸上,點E在這個函數的圖象上.

求OF的長;

連接AF,BE,證明四邊形ABEF是正方形.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视