【題目】科技館是少年兒童節假日游玩的樂園.
如圖所示,圖中點的橫坐標x表示科技館從8:30開門后經過的時間(分鐘),縱坐標y表示到達科技館的總人數.圖中曲線對應的函數解析式為y=,10:00之后來的游客較少可忽略不計.
(1)請寫出圖中曲線對應的函數解析式;
(2)為保證科技館內游客的游玩質量,館內人數不超過684人,后來的人在館外休息區等待.從10:30開始到12:00館內陸續有人離館,平均每分鐘離館4人,直到館內人數減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?
科目:初中數學 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E為AB上一點,AE=AD,且BF∥CD,AF⊥CE的延長線于F.連接DE交對角線AC于H.下列結論:①△ACD≌ACE;②AC垂直平分ED;③CE=2BF;④CE平分∠ACB.其中結論正確的是________.(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了編撰祖國的優秀傳統文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復疑無路”.
(1)小明回答該問題時,對第二個字是選“重”還是選“窮”難以抉擇,若隨機選擇其中一個,則小明回答正確的概率是 ;
(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的表達式為y=x2-2x-6,AB為半圓的直徑,則這個“果圓”被y軸截得的“弦”CD的長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,與
兩角的角平分線交于點
,
是射線
上一個動點,過點
的直線分別交射線
,
,
于點
,
,
.
(1)如圖1,若,
,
,求
的度數;
(2)如圖2,若,請探索
與
的數量關系,并證明你的結論;
(3)在點運動的過程中,請直接寫出
,
與
這三個角之間滿足的數量關系:_________________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究:
(1)如圖1,在△ABC與△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,連結BD、CE.請寫出圖1中所有全等的三角形: (不添加字母).
(2)如圖2,已知△ABC,AB=AC,∠BAC=90°,是過A點的直線,CN⊥
,BM⊥
,垂足為N、M.求證:△ABM≌△CAN.
解決問題:
(3)如圖3,已知△ABC,AB=AC,∠BAC=90°,D在邊BC上,DA=DE,∠ADE =90°.
求證:AC⊥CE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB∥CD,∠E=90°,那么∠B+∠D等于多少度?為什么?
解:過點E作EF∥AB,
得∠B+∠BEF=180°(________________________),
因為AB∥CD(已知),
EF∥AB(所作),
所以EF//CD(________________________).
得________________________(兩直線平行,同旁內角互補),
所以∠B+∠BEF+∠DEF+∠D=________°(__________).
即∠B+∠BED+∠D=___________°.
因為∠BED=90°(已知),
所以∠B+∠D=___________°(等式性質)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com